A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of QTLs for Yield Heterosis in Rice Using a RIL Population and Its Testcross Population. | LitMetric

Detection of QTLs for Yield Heterosis in Rice Using a RIL Population and Its Testcross Population.

Int J Genomics

State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.

Published: December 2016

Analysis of the genetic basis of yield heterosis in rice was conducted by quantitative trait locus mapping using a set of 204 recombinant inbred lines (RILs), its testcross population, and mid-parent heterosis dataset (H). A total of 39 QTLs for six yield traits were detected, of which three were detected in all the datasets, ten were common to the RIL and testcross populations, six were common to the testcross and H, and 17, 2, and 1 were detected for RILs, testcrosses, and H, respectively. When a QTL was detected in both the RIL and testcross populations, the difference between TQ and IR24 and that between Zh9A/TQ and Zh9A/IR24 were always in the same direction, providing the potential to increase the yield of hybrids by increasing the yield of parental lines. Genetic action mode of the 39 QTLs was inferred by comparing their performances in RILs, testcrosses, and H. The genetic modes were additive for 17 QTLs, dominance for 12 QTLs, and overdominance for 10 QTLs. These results suggest that dominance and overdominance are the most important contributor to yield heterosis in rice, in which the accumulative effects of yield components play an important role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215376PMC
http://dx.doi.org/10.1155/2016/2587823DOI Listing

Publication Analysis

Top Keywords

yield heterosis
12
heterosis rice
12
qtls yield
8
testcross population
8
ril testcross
8
testcross populations
8
rils testcrosses
8
qtls dominance
8
yield
7
testcross
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!