visualization and quantification of experimental myocardial infarction by indocyanine green fluorescence imaging.

Biomed Opt Express

Center for Laser Medicine, Department of Pathophysiology, First I.P. Pavlov Federal Medical University of St. Petersburg, Lev Tolstoy Str. 6/8, 197022, St. Petersburg, Russia; Institute of Experimental Medicine, Federal Almazov Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia; ITMO University, Kronverksky Avenue 49, 197101 St. Petersburg, Russia.

Published: January 2017

The fluorophore indocyanine green accumulates in areas of ischemia-reperfusion injury due to an increase in vascular permeability and extravasation of the dye. The aim of the study was to validate an indocyanine green-based technique of in vivo visualization of myocardial infarction. A further aim was to quantify infarct size ex vivo and compare this technique with the standard triphenyltetrazolium chloride staining. Wistar rats were subjected to regional myocardial ischemia (30 minutes) followed by reperfusion (n = 7). Indocyanine green (0.25 mg/mL in 1 mL of normal saline) was infused intravenously for 10 minutes starting from the 25th minute of ischemia. Video registration in the near-infrared fluorescence was performed. Epicardial fluorescence of indocyanine green corresponded to the injured area after 30 minutes of reperfusion. Infarct size was similar when determined ex vivo using traditional triphenyltetrazolium chloride assay and indocyanine green fluorescent labeling. Intravital visualization of irreversible injury can be done directly by fluorescence on the surface of the heart. This technique may also be an alternative for ex vivo measurements of infarct size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231288PMC
http://dx.doi.org/10.1364/BOE.8.000151DOI Listing

Publication Analysis

Top Keywords

indocyanine green
20
infarct size
12
myocardial infarction
8
triphenyltetrazolium chloride
8
minutes reperfusion
8
indocyanine
6
green
5
visualization quantification
4
quantification experimental
4
experimental myocardial
4

Similar Publications

the axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.

View Article and Find Full Text PDF

Real-time computed tomography fluoroscopy-guided dye marking prior to robotic pulmonary resection.

J Cardiothorac Surg

December 2024

Department of Radiology, Sakai City Medical Center Hospital, Ebaraji-Cho, Nishi-Ku, Sakai-Shi, Osaka, 593-8304, Japan.

Background: The detection of tumor localization is difficult in robotic surgery because surgeons have no sense of touch and rely on visual information. This study aimed to evaluate the efficacy of preoperative CT-guided dye marking of lung nodules prior to robotic surgery.

Methods: Patients undergoing CT-guided dye marking prior to robotic surgery at our hospital between September 2019 and April 2024 were retrospectively analyzed.

View Article and Find Full Text PDF

Purpose: During breast cancer surgery, the use of dyes such as indigo carmine, methylene blue, or indocyanine green (ICG) for targeting axillary lymph nodes (ALNs) under ultrasound guidance can result in rapid diffusion, complicated tissue differentiation, and disruption of staining. LuminoMark™, a novel ICG-hyaluronic acid mixture, can provide real-time visualization and minimize dye spread, thereby ensuring a clear surgical field. The aim of our study was to evaluate the efficacy of LuminoMark™ for targeting ALNs in patients with breast cancer.

View Article and Find Full Text PDF

Background: Near-infrared fluorescence imaging using intravenous indocyanine green (ICG) has a wide range of applications in multiple surgical scenarios. In laparoscopic cholecystectomy (LC), it facilitates intraoperative identification of the biliary system and reduces the risk of bile duct injury. However, the usual single color fluorescence imaging (SCFI) has limitations in manifesting the fluorescence signal of the target structure when its intensity is relatively low.

View Article and Find Full Text PDF

Background: Laparoscopic anatomical liver resection has become more challenging because some subsegmental Glissonean pedicles are hard to dissect. Here, we introduce how to dissect every (sub) segmental Glissonean pedicle from the first porta hepatis and perform standardized (sub) segmentectomy [from segment 1 (S1) to S8].

Aim: To summarize our methods of laparoscopic anatomical segmental and subsegmental liver resection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!