Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Results of blood culture (BC) diagnostics should be swiftly available to guide treatment of critically ill patients. Conventional BC diagnostics usually performs species identification of microorganisms from mature solid medium colonies. Species identification might be speed up by using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) of biomass from shortly incubated solid media.
Methods: This single-center analysis compared the applicability of MALDI-TOF-based species identification from shortly incubated cultures in laboratory routine vs. conventional diagnostics and assessed its effects of on empiric antibiotic therapy.
Results: Median time between detection of BCs as "positive" by incubators and further processing (e.g. microscopy) was 6 h 21 min. Median time between microscopy and result reporting to the ward was 15 min. Including 193 BCs, MALDI-TOF from shortly incubated biomass resulted in significantly faster ( > 0.001) species identification. Species results became available for clinicians after a median of 188 min (231 min for Gram-positive bacteria, 151 min for Gram-negative bacteria) compared to 909 min ( = 192 BCs) when conventional diagnostics was used. For 152/179 bacteremia episodes (85%) empiric antibiotic therapy had already been started when the microscopy result was reported to the ward; microscopy led to changes of therapies in 14/179 (8%). In contrast, reporting the bacterial species (without antibiogram) resulted in therapeutic adjustments in 36/179 (20%). Evaluating these changes revealed improved therapies in 26/36 cases (72%).
Conclusions: Species identification by MALDI-TOF MS from shortly incubated subcultures resulted in adjustments of empiric antibiotic therapies and might improve the clinical outcome of septic patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237541 | PMC |
http://dx.doi.org/10.1186/s13756-017-0173-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!