Unlabelled: Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the task, and their activity correlated with the animals' perceptual decisions (unexplained by the stimulus). This may partially explain similar correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation of such decision-related activity is complicated by the effects of interneuronal "noise" correlations between sensory neurons. Recent work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming, 2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantitatively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual tasks.
Significance Statement: Activity in sensory neurons that correlates with an animal's decision is widely believed to provide insights into how the brain uses information from sensory neurons. Recent theoretical work developed simple predictions to differentiate decoding schemes, and found support for optimal linear readout of early sensory populations with information-limiting correlations. Here, we observed decision-related activity for neurons in visual area V2 of macaques performing fine disparity discrimination, as yet the earliest site for this task. These findings, and previously reported results from V2 in a different task, deviated from the predictions for optimal linear readout of a population with information-limiting correlations. Our results suggest that optimal linear decoding of early sensory information is not a general decoding strategy used by the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242413 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2445-16.2016 | DOI Listing |
Pediatr Rheumatol Online J
January 2025
Division of Pediatric Rheumatology, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98105, USA.
Background: NSAIDs are commonly used as first line therapy in chronic nonbacterial osteomyelitis (CNO) but are not effective for all patients. The objective of this study was to identify clinical variables associated with NSAID monotherapy response versus requiring second-line medication in a single-center cohort of patients with CNO.
Methods: The charts of children with CNO who attended a CNO clinic at a quaternary care center between 1/1/05 and 7/31/21 were retrospectively reviewed.
Sci Rep
January 2025
College of Intelligent systems Science and Engineering, Harbin Engineering University, Harbin, 150006, China.
Most of toolpaths for machining is composed of series of short linear segments (G01 command), which limits the feedrate and machining quality. To generate a smooth machining path, a new optimization strategy is proposed to optimize the toolpath at the curvature level. First, the three essential components of optimization are introduced, and the local corner smoothness is converted into an optimization problem.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
College of Computer, Chongqing University, No. 55 Daxuecheng South Rd, Shapingba, 401331, Chongqing, China.
Convolutional neural networks (CNNs) have become indispensable to medical image diagnosis research, enabling the automated differentiation of diseased images from extensive medical image datasets. Due to their efficacy, these methods raise significant privacy concerns regarding patient images and diagnostic models. To address these issues, some researchers have explored privacy-preserving medical image diagnosis schemes using fully homomorphic encryption (FHE).
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer Sciences, Anhui University, Hefei, 230039, China.
Decoding the semantic categories of complex sceneries is fundamental to numerous artificial intelligence (AI) infrastructures. This work presents an advanced selection of multi-channel perceptual visual features for recognizing scenic images with elaborate spatial structures, focusing on developing a deep hierarchical model dedicated to learning human gaze behavior. Utilizing the BING objectness measure, we efficiently localize objects or their details across varying scales within scenes.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; and.
The treatment regimen for [Lu]Lu-prostate-specific membrane antigen (PSMA) 617 therapy follows that of chemotherapy: 6 administrations of a fixed activity, each separated by 6 wk. Mathematic modeling can be used to test the hypothesis that the current treatment regimen for a radiopharmaceutical modality is suboptimal. A mathematic model was developed to describe tumor growth during [Lu]Lu-PSMA therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!