Saccades cause rapid retinal-image shifts that go perceptually unnoticed several times per second. The mechanisms for saccadic suppression have been controversial, in part because of sparse understanding of neural substrates. In this study we uncovered an unexpectedly specific neural locus for spatial frequency-specific saccadic suppression in the superior colliculus (SC). We first developed a sensitive behavioral measure of suppression in two macaque monkeys, demonstrating selectivity to low spatial frequencies similar to that observed in earlier behavioral studies. We then investigated visual responses in either purely visual SC neurons or anatomically deeper visual motor neurons, which are also involved in saccade generation commands. Surprisingly, visual motor neurons showed the strongest visual suppression, and the suppression was dependent on spatial frequency, as in behavior. Most importantly, suppression selectivity for spatial frequency in visual motor neurons was highly predictive of behavioral suppression effects in each individual animal, with our recorded population explaining up to ~74% of behavioral variance even on completely different experimental sessions. Visual SC neurons had mild suppression, which was unselective for spatial frequency and thus only explained up to ~48% of behavioral variance. In terms of spatial frequency-specific saccadic suppression, our results run contrary to predictions that may be associated with a hypothesized SC saccadic suppression mechanism, in which a motor command in the visual motor and motor neurons is first relayed to the more superficial purely visual neurons, to suppress them and to then potentially be fed back to cortex. Instead, an extraretinal modulatory signal mediating spatial-frequency-specific suppression may already be established in visual motor neurons. Saccades, which repeatedly realign the line of sight, introduce spurious signals in retinal images that normally go unnoticed. In part, this happens because of perisaccadic suppression of visual sensitivity, which is known to depend on spatial frequency. We discovered that a specific subtype of superior colliculus (SC) neurons demonstrates spatial-frequency-dependent suppression. Curiously, it is the neurons that help mediate the saccadic command itself that exhibit such suppression, and not the purely visual ones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380778 | PMC |
http://dx.doi.org/10.1152/jn.00911.2016 | DOI Listing |
bioRxiv
December 2024
Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
The basal ganglia play a crucial role in action selection by facilitating desired movements and suppressing unwanted ones. The substantia nigra pars reticulata (SNr), a key output nucleus, facilitates movement through disinhibition of the superior colliculus (SC). However, its role in action suppression, particularly in primates, remains less clear.
View Article and Find Full Text PDFPsychophysiology
January 2025
Department of Psychology and Research Institute for Health Sciences (iUNICS), University of the Balearic Islands, Palma, Spain.
Unexpected sounds have been shown to trigger a global and transient inhibition of motor responses. Recent evidence suggests that eye movements may also be inhibited in a similar way, but it is not clear how quickly unexpected sounds can affect eye-movement responses. Additionally, little is known about whether they affect only voluntary saccades or also reflexive saccades.
View Article and Find Full Text PDFCerebellum
December 2024
NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, Clinical Neurology, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK.
Whereas several studies have reported on quantitative oculomotor and vestibular measurements in spinocerebellar ataxia type 6 (SCA6), selecting the most suitable paradigms remains challenging. We aimed to address this knowledge gap through a systematic literature review and providing disease-specific recommendations for a tailored set of eye-movement recordings in SCA6. A literature search (MEDLINE, Embase) was performed focusing on studies reporting on quantitative oculomotor and/or vestibular measurements in SCA6-patients.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
We normally perceive a stable visual environment despite eye movements. To achieve such stability, visual processing integrates information across a given saccade, and laboratory hallmarks of such integration are robustly observed by presenting brief perisaccadic visual probes. In one classic phenomenon, probe locations are grossly mislocalized.
View Article and Find Full Text PDFIndian J Otolaryngol Head Neck Surg
December 2024
Manipal Academy of Higher Education, Manipal, India.
Listening to PLD at higher volume levels are known to cause subtle pre-clinical damage to the auditory system and vestibular end organs. Exposure to PLDs may also cause vestibular dysfunction much before the cochlear dysfunction. SHIMP is a newly described tool to assess the vestibulo-ocular reflex (VOR) gain suppression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!