MarpoDB: An Open Registry for Marchantia Polymorpha Genetic Parts.

Plant Cell Physiol

Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK.

Published: January 2017

Marchantia polymorpha is an extant relative of the earliest terrestrial plants and has attracted a substantial interest as a model organism for evolutionary and developmental studies. Given its relatively simple genome, compact gene families, simple morphology, ease of propagation and transformation, M. polymorpha is becoming a promising platform for plant synthetic biology. Modular genetic parts have been essential for development of synthetic biology approaches, so we sought to design an engineering oriented database for M. polymorpha genetic parts where each gene is a stand-alone functional unit. MarpoDB is a database of M. polymorpha genes and genetic parts, which is tailored to become an integral tool for a synthetic biology workflow. Among its features are precompiled cross-database querying to InterPro, Pfam signatures and non-redundant Viridiplantae BLAST annotations; BLAST querying to M. polymorpha genes; sequence export in GenBank format; recoding of sequences to the common syntax for type IIS assembly and exchange of DNA parts; and a minimalistic, intuitive and interactive user interface for gene models and sequence exploration. Furthermore, we have implemented user input to encourage feedback, collaboration and exchange between the MarpoDB community. MarpoDB source-code is released on GitHub to promote development of computational tools for synthetic biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444569PMC
http://dx.doi.org/10.1093/pcp/pcw201DOI Listing

Publication Analysis

Top Keywords

genetic parts
16
synthetic biology
16
marchantia polymorpha
8
polymorpha genetic
8
database polymorpha
8
polymorpha genes
8
polymorpha
6
parts
5
marpodb
4
marpodb open
4

Similar Publications

Sortase A-mediated ligation (SML) or "sortagging" has become a popular technology to selectively introduce structurally diverse protein modifications. Despite the great progress in the optimization of the reaction conditions and design of miscellaneous C- or N-terminal protein modification strategies, the reported yields of conjugates are highly variable. In this study, we have systematically investigated C-terminal protein sortagging efficiency using a combination of several rationally selected and modified acceptor proteins and a panel of incoming surrogate non-peptidic amine nucleophile substrates varying in the structural features of their amino linker parts and cargo molecules.

View Article and Find Full Text PDF

Cloning methods are fundamental to synthetic biology research. The capability to generate custom DNA constructs exhibiting predictable protein expression levels is crucial to the engineering of biology. Golden Gate cloning, a modular cloning (MoClo) technique, enables rapid and reliable one-pot assembly of genetic parts.

View Article and Find Full Text PDF

S6K2 in Focus: Signaling Pathways, Post-Translational Modifications, and Computational Analysis.

Int J Mol Sci

December 2024

Division of Cancer, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK.

S6 Kinase 2 (S6K2) is a key regulator of cellular signaling and is crucial for cell growth, proliferation, and survival. This review is divided into two parts: the first focuses on the complex network of upstream effectors, downstream modulators, and post-translational modifications (PTMs) that regulate S6K2 activity. We emphasize the dynamic nature of S6K2 regulation, highlighting its critical role in cellular homeostasis and its potential as a therapeutic target in diseases like cancer.

View Article and Find Full Text PDF

, Encoding a Leucine-Rich Repeat Containing Receptor-like Protein, Is a Major Aphid () Resistance Gene in Sorghum.

Int J Mol Sci

December 2024

USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.

Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.

View Article and Find Full Text PDF

(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!