The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen. Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355598 | PMC |
http://dx.doi.org/10.1128/JVI.02255-16 | DOI Listing |
Chin Med J (Engl)
January 2025
Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, and National Children's Medical Center, Shanghai 200127, China.
Curr Pharm Biotechnol
January 2025
Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
The SARS-CoV-2 pandemic has highlighted the need for society, as a whole, to be prepared against potential pandemics caused by a variety of different viral families of concern. Here, we describe a roadmap towards the identification and validation of conserved T cell epitope regions from Viral Families of Pandemic Potential (VFPP). For each viral family, we select a prototype virus, the sequence of which could be utilized in epitope identification screens.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
Background: Although existing disease preparedness and response frameworks provide guidance about strengthening emergency response capacity, little attention is paid to health service continuity during emergency responses. During the 2014 Ebola outbreak, there were 11,325 reported deaths due to the Ebola virus and yet disruption in access to care caused more than 10,000 additional deaths due to measles, HIV/AIDS, tuberculosis, and malaria. Low- and middle-income countries account for the largest disease burden due to HIV, tuberculosis, and malaria and yet previous responses to health emergencies showed that HIV, tuberculosis, and malaria service delivery can be significantly disrupted.
View Article and Find Full Text PDFAim: Romania is currently facing a prolonged measles outbreak. The aim of the study was to analyse the circulating human measles virus (HMV) strains by combining whole genome sequencing (WGS) with phylogenetic analysis, with a focus on the haemagglutinin gene.
Methods: We conducted an observational study in the first five months of 2024, in which 168 patients diagnosed with measles were randomly included.
Endocr Metab Immune Disord Drug Targets
December 2024
Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia1113, Bulgaria.
Multiple Sclerosis (MS), a debilitating inflammatory disorder of the central nervous system characterized by demyelination, is significantly influenced by polygenic variations. Although the precise cause of MS remains unclear, it is believed to arise from a complex interplay of genetic and environmental factors. Recent investigations have focused on the polygenic nature of genetic alterations linked to MS risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!