In this study, the concentrations of water soluble ions (WSI), organic carbon (OC), and elemental carbon (EC) of size-resolved (0.056-18μm) atmospheric aerosols were measured in July and August 2015 in Shanghai, China. Backward trajectory model and potential source contribution function (PSCF) model were used to identify the potential source distributions of size-resolved particles and PM-associated atmospheric inorganic and carbonaceous aerosols. The results showed that the average mass concentrations of PM, PM, and PM were 21.21, 82.90, and 100.1μgm in July and 7.00, 29.21, and 35.10μgm in August, respectively, indicating that the particulate matter pollution was more serious in July than in August in this study due to the strong dependence of the aerosol species on the air mass origins. The trajectory cluster analysis revealed that the air masses originated from heavily industrialized areas including the Pearl River Delta (PRD) region, the Yangtze River Delta (YRD) region and the Beijing-Tianjin region were characterised with high OC and SO loadings. The results of PSCF showed that the pollution in July was mainly influenced by long-range transport while it was mainly associated to local and intra-regional transport in August. Besides the contributions of anthropogenic sources from YRD and PRD region, ship emissions from the East China Sea also made a great contribution to the high loadings of PM and PM-associated NO, NH, and EC in July. SO in Shanghai was dominantly ascribed to anthropogenic sources and the high PSCF values for PM-associated SO observed in August was mainly due to the ship emissions of Shanghai port, such as Wusong port and Yangshan deep-water port. These results indicated that the particulate pollutants from long-range transported air masses and shipping made a significant contribution to Shanghai's air pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.01.073 | DOI Listing |
Glob Chang Biol
January 2025
Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
CNRS, IRCELYON, UMR 5256, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France.
While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (CHO) is used as a BB proxy to investigate these effects.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
Mercury (Hg) is a neurotoxic pollutant that is ubiquitous on the planet and receives global concern because of its adverse health effects. Particle-bound Hg formation in the atmosphere stems mainly from the adsorption of reactive gaseous Hg on aerosol particles, particularly sea salt aerosol. However, the observed comparable abundance of Hg over Hg in the marine atmosphere has not been reproduced by traditional statistics-based schemes, which were constructed by continental observations.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, University of Helsinki, Helsinki, Finland.
Secondary organic aerosols (SOAs) significantly impact Earth's climate and human health. Although the oxidation of volatile organic compounds (VOCs) has been recognized as the major contributor to the atmospheric SOA budget, the mechanisms by which this process produces SOA-forming highly oxygenated organic molecules (HOMs) remain unclear. A major challenge is navigating the complex chemical landscape of these transformations, which traditional hypothesis-driven methods fail to thoroughly investigate.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!