Background: In preparation for migration from freshwater to marine habitats, Atlantic salmon (Salmo salar L.) undergo smoltification, a transformation that includes the acquisition of hyposmoregulatory capacity. The growth hormone (Gh)/insulin-like growth-factor (Igf) axis promotes the development of branchial ionoregulatory functions that underlie ion secretion. Igfs interact with a suite of Igf binding proteins (Igfbps) that modulate hormone activity. In Atlantic salmon smolts, igfbp4,-5a,-5b1,-5b2,-6b1 and-6b2 transcripts are highly expressed in gill. We measured mRNA levels of branchial and hepatic igfbps during smoltification (March, April, and May), desmoltification (July) and following seawater (SW) exposure in March and May. We also characterized parallel changes in a broad suite of osmoregulatory (branchial Na/K-ATPase (Nka) activity, Na /K /2Cl cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator 1 (cftr1) transcription) and endocrine (plasma Gh and Igf1) parameters.
Results: Indicative of smoltification, we observed increased branchial Nka activity, nkcc1 and cftr1 transcription in May. Branchial igfbp6b1 and -6b2 expression increased coincidentally with smoltification. Following a SW challenge in March, igfbp6b1 showed increased expression while igfbp6b2 exhibited diminished expression. igfbp5a,-5b1 and-5b2 mRNA levels did not change during smolting, but each had lower levels following a SW exposure in March.
Conclusions: Salmonids express an especially large suite of igfbps. Our data suggest that dynamic expression of particular igfbps accompanies smoltification and SW challenges; thus, transcriptional control of igfbps may provide a mechanism for the local modulation of Igf activity in salmon gill.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242021 | PMC |
http://dx.doi.org/10.1186/s12899-017-0028-5 | DOI Listing |
J Vet Diagn Invest
January 2025
Åkerblå, Sistranda, Norway.
Compromised gill health is a critical cause of forfeited welfare in Atlantic salmon farming. Detecting and quantifying the early onset of gill disease is important to reveal initial inflicting stimuli. We collected gill samples of 45 Atlantic salmon from 2 commercial recirculating aquaculture systems (RASs) spanning fry-to-market-size fish with no clinical signs of gill disease.
View Article and Find Full Text PDFInfectious diseases pose significant challenges to Norwegian Atlantic salmon aquaculture. Vaccines are critical for disease prevention; however, a deeper understanding of the immune system is essential to improve vaccine efficacy. Immunoglobulin M (IgM) is the main antibody involved in the systemic immune response of teleosts, including Atlantic salmon.
View Article and Find Full Text PDFInfections with bacteria of the genus Pasteurella have increased in occurrence in Atlantic salmon (Salmo salar) farms in Norway since 2018. This increase coincides with increased use of non-medicinal treatments against the parasitic salmon louse, Lepeophtheirus salmonis, in the farms. Here, we analysed the statistical association between the use of non-medicinal delousing methods and pasteurellosis in salmon farming in western Norway, from 2018 to 2023.
View Article and Find Full Text PDFFoods
January 2025
Nofima AS, Richard Johnsensgate 4, 4068 Stavanger, Norway.
The aim of this study was to develop a chilled, texture-modified salmon product for dysphagia patients, enriched with dairy and fish hydrolysate proteins. The challenge was to create a product with appealing sensory qualities and texture that meets level 5 (minced & moist) of the IDDSI framework. Atlantic salmon () was heat-treated (95 °C/15 min), blended, and reconstructed by adding texture modifiers, casein and whey protein, and enzymatically derived fish hydrolysate.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.
This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!