Although RNA synthesis can be reliably controlled with different T7 transcriptional promoters during cell-free gene expression with the PURE system, protein synthesis remains largely unaffected. To better control protein levels, we investigated a series of ribosome binding sites (RBSs). Although RBS strength did strongly affect protein synthesis, the RBS sequence could explain less than half of the variability of the data. Protein expression was found to depend on other factors besides the strength of the RBS, including the GC content of the coding sequence. The complexity of protein synthesis in comparison to RNA synthesis was observed by the higher degree of variability associated with protein expression. This variability was also observed in an E. coli cell extract-based system. However, the coefficient of variation was larger with E. coli RNA polymerase than with T7 RNA polymerase, consistent with the increased complexity of E. coli RNA polymerase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.6b00250 | DOI Listing |
Front Immunol
January 2025
Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, Kiel, Germany.
Introduction: Several aspects of the involvement of HPV in the pathogenesis of HPV-associated diseases remain poorly understood including mechanistic aspects of infection and the question of why the majority of HPV-positive HNSCC-patients are non-smokers, whereas HPV-negatives are smokers. Our previous research, based on 1,100 patient samples, hypothesized an explanation for this phenomenon: Smoking induces upregulation of a mucosal protective protein (SLPI), which competes with HPV for binding to Annexin A2 (AnxA2), pivotal for HPV cell entry. Here we investigate the mechanistic aspects of our hypothesis using transfection assays.
View Article and Find Full Text PDFBiomater Res
January 2025
Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Lysine lactylation is a newly discovered protein post-translational modification that plays regulatory roles in cell metabolism, growth, reprogramming, and tumor progression. It utilizes lactate as the modification precursor, which is an end product of glycolysis while functioning as a signaling molecule in cells. Unlike previous reviews focused primarily on eukaryotes, this review aims to provide a comprehensive summary of recent knowledge about lysine lactylation in prokaryotes and eukaryotes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!