Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+) alternating with stripes of Purkinje cells with little or no expression (ZII-). In contrast, in snakes and turtles, ZII is not expressed heterogeneously; rather all Purkinje cells are ZII+. Here, we examined the expression of ZII in the cerebellum of lizards to elucidate the evolutionary origins of ZII stripes in Sauropsida. We focused on the central netted dragon (Ctenophorus nuchalis) but also examined cerebellar ZII expression in 5 other dragon species (Ctenophorus spp.). In contrast to what has been observed in snakes and turtles, we found that in these lizards, ZII is heterogeneously expressed. In the posterior part of the cerebellum, on each side of the midline, there were 3 sagittal stripes consisting of Purkinje cells with high ZII expression (ZII+) alternating with 2 sagittal stripes with weaker ZII expression (ZIIw). More anteriorly, most of the Purkinje cells were ZII+, except laterally, where the Purkinje cells did not express ZII (ZII-). Finally, all Purkinje cells in the auricle (flocculus) were ZII-. Overall, the parasagittal heterogeneous expression of ZII in the cerebellum of lizards is similar to that in mammals and birds, and contrasts with the homogenous ZII+ expression seen in snakes and turtles. We suggest that a sagittal heterogeneous expression of ZII represents the ancestral condition in stem reptiles which was lost in snakes and turtles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000452857 | DOI Listing |
Mol Brain
January 2025
Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
Kruppel-like factor 15 (KLF15), a member of the KLF family, is closely involved in many biological processes. However, the mechanism by which KLF15 regulates neural development is still unclear. Considering the complexity and importance of neural network development, in this study, we investigated the potent regulatory role of KLF15 in neural network development.
View Article and Find Full Text PDFWe use our tongue much like our hands: to interact with objects and transport them. For example, we use our hands to sense properties of objects and transport them in the nearby space, and we use our tongue to sense properties of food morsels and transport them through the oral cavity. But what does the cerebellum contribute to control of tongue movements? Here, we trained head-fixed marmosets to make skillful tongue movements to harvest food from small tubes that were placed at sharp angles to their mouth.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea.
Alexander's law states that spontaneous nystagmus increases when looking in the direction of fast-phase and decreases during gaze in slow-phase direction. Disobedience to Alexander's law is occasionally observed in central nystagmus, but the underlying neural circuit mechanisms are poorly understood. In a retrospective analysis of 2,652 patients with posterior circulations stroke, we found a violation of Alexander's law in one or both directions of lateral gaze in 17 patients with lesions of unilateral lateral medulla affecting the vestibular nucleus.
View Article and Find Full Text PDF<b>Background and Objective:</b> Methotrexate is an anti-metabolic medication used to treat cancer. It causes oxidative stress in nerve tissue and has neurotoxic effects. A strong antioxidant and effective free radical scavenger is vitamin C.
View Article and Find Full Text PDFThe role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!