Hypoxia-inducible factors (HIFs) are key regulators in oxygen homeostasis. Their stabilization and activity are regulated by prolyl hydroxylase domain (PHD)-1, -2, -3 and factor inhibiting HIF (FIH). This study investigated the relation between these oxygen sensors and the clinical behaviors and prognosis of hepatocellular carcinoma (HCC). Tissue microarray and RT-PCR analysis of tumor tissues and adjacent non-tumor liver tissues revealed that mRNA and protein levels of both PHD3 and FIH were lower within tumors. The lower expression of PHD3 in tumor was associated with larger tumor size, incomplete tumor encapsulation, vascular invasion and higher Ki-67 LI (p < 0.05). The lower expression of FIH in tumor was associated with incomplete tumor encapsulation, vascular invasion, as well as higher TNM stage, BCLC stage, microvascular density and Ki-67 LI (p < 0.05). Patients with reduced expression of PHD3 or FIH had markedly shorter disease-free survival (DFS), lower overall survival (OS), or higher recurrence (p < 0.05), especially early recurrence. Patients with simultaneously reduced expression of PHD3 and FIH exhibited the least chance of forming tumor encapsulation, highest TNM stage (p < 0.0083), lowest OS and highest recurrence rate (p < 0.05). Multivariate analysis indicated that a lower expression of FIH independently predicted a poor prognosis in HCC. These findings indicate that downregulation of PHD3 and FIH in HCC is associated with more aggressive tumor behavior and a poor prognosis. PHD3 and FIH may be potential therapeutic targets for HCC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355071 | PMC |
http://dx.doi.org/10.18632/oncotarget.14677 | DOI Listing |
Technol Cancer Res Treat
November 2021
1st Urologic Department, Gennimatas General Hospital, 37782Aristotle University of Thessaloniki, Thessaloniki, Greece.
Background: One of the main factors in response to hypoxia in the tumor microenvironment is the hypoxia-inducible factor (HIF) pathway. Although its role in other solid tumors, particularly renal cell carcinoma, has been sufficiently elucidated, it remains elusive in prostate cancer. The aim of the present study was to investigate the expression of main proteins involved in this pathway and determine the correlation of the results with clinicopathological outcomes of patients with prostate cancer.
View Article and Find Full Text PDFMed Mol Morphol
December 2020
A' Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
The purpose of this study is to evaluate the expression and the prognostic role of main factors, involved in the hypoxia pathway, in patients with clear-cell renal cell carcinoma (ccRCC). Immunohistochemical expression of Hypoxia inducible factors (HIF) HIF-1a, HIF-2a, prolyl hydroxylases PHD1, PHD2, PHD3, and factor inhibiting HIF (FIH) was assessed on a tissue microarray, containing tumour and corresponding normal kidney tissue from 66 patients underwent surgery for ccRCC. Expression levels were evaluated in relation to T stage, Fuhrman grade, cancer-specific, and overall survival (OS).
View Article and Find Full Text PDFCell Metab
April 2018
Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Department of Cell and Molecular Biology, Karolinska Institute, Stockholm SE-171 77, Sweden. Electronic address:
Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner.
View Article and Find Full Text PDFOncotarget
February 2017
Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan 430030, China.
Hypoxia-inducible factors (HIFs) are key regulators in oxygen homeostasis. Their stabilization and activity are regulated by prolyl hydroxylase domain (PHD)-1, -2, -3 and factor inhibiting HIF (FIH). This study investigated the relation between these oxygen sensors and the clinical behaviors and prognosis of hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFAdv Exp Med Biol
June 2017
Department of Renal Medicine, University of Oxford, Oxford, UK.
Hypoxia stimulates a variety of adaptive responses, many mediated via the hypoxia inducible factors (HIF) family of transcriptional complexes. The balance of HIF-1, -2 and -3 controls a variety of genes, directly up-regulating transcription of genes involved in erythropoiesis, angiogenesis, vasomotor tone, metabolic pathways and processes related to cell multiplication and survival, and indirectly reducing the transcription of genes with other effects. HIF transcription factors are heterodimers consisting of an oxygen-regulated alpha chain bound to the constitutive aryl hydrocarbon receptor nuclear translocator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!