Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2017.01.016DOI Listing

Publication Analysis

Top Keywords

cardiac progenitor
12
progenitor cells
12
human cardiac
8
cells
8
emt modulation
8
β2-adrenergic signaling
8
long-term but-treated
8
but-treated cdcs
8
css
6
emt
5

Similar Publications

An autocrine synergistic desmin-SPARC network promotes cardiomyogenesis in cardiac stem cells.

Cells Dev

December 2024

Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Department of Molecular Biology, Vienna, Austria. Electronic address:

The mammalian heart contains cardiac stem cells throughout life, but it has not been possible to harness or stimulate these cells to repair damaged myocardium in vivo. Assuming physiological relevance of these cells, which have evolved and have been maintained throughout mammalian evolution, we hypothesize that cardiac stem cells may contribute to cardiomyogenesis in an unorthodox manner. Since the intermediate filament protein desmin and the matricellular Secreted Protein Acidic and Rich in Cysteine (SPARC) promote cardiomyogenic differentiation during embryogenesis in a cell-autonomous and paracrine manner, respectively, we focus on their genes and employ mouse embryonic and cardiac stem cell lines as in vitro models to ask whether desmin and SPARC cooperatively influence cardiomyogenesis in cardiac stem and progenitor cells.

View Article and Find Full Text PDF

Aneurysm Is Restricted by CD34 Cell-Formed Fibrous Collars Through the PDGFRb-PI3K Axis.

Adv Sci (Weinh)

December 2024

Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.

View Article and Find Full Text PDF

Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis.

Immunity

December 2024

Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany. Electronic address:

B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator TNFAIP3/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not.

View Article and Find Full Text PDF

International Cardiovascular Development, Anatomy, and Regeneration (ICDAR) Community Meeting: Prague 2024.

J Cardiovasc Dev Dis

December 2024

Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.

The International Cardiovascular Anatomy, Development, and Regeneration meeting was held from 18-20 September 2024, in Prague, Czech Republic, supported by the European Society of Cardiology's Working Group on Development, Anatomy, and Pathology. Hosted at the Institute of Anatomy, First Faculty of Medicine, the event began with a hands-on workshop on normal and malformed human hearts, covering morphology, echocardiographic imaging, and rare congenital cases. The session allowed participants to examine and image both normal and malformed hearts.

View Article and Find Full Text PDF

To enhance therapeutic strategies for cardiovascular diseases, the development of more reliable in vitro preclinical systems is imperative. These models, crucial for disease modeling and drug testing, must accurately replicate the 3D architecture of native heart tissue. In this study, we engineered a scaffold with aligned poly(lactic--glycolic acid) (PLGA) microfilaments to induce cellular alignment in the engineered cardiac microtissue (ECMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!