AI Article Synopsis

  • Gait analysis enhances therapeutic routines, and InvestiGAIT, a sensor-based system, was created to capture both lower and upper body motion, unlike commercial systems.
  • The study assessed the reliability of InvestiGAIT using four off-the-shelf sensors, involving 25 healthy participants over two measurement sessions a week apart.
  • Findings revealed excellent reliability for most gait parameters and strong correlations in upper body motion; however, a few parameters like midswing height and stride length showed less reliability.

Article Abstract

Gait analysis is an important and useful part of the daily therapeutic routine. InvestiGAIT, an inertial sensor-based system, was developed for using in different research projects with a changing number and position of sensors and because commercial systems do not capture the motion of the upper body. The current study is designed to evaluate the reliability of InvestiGAIT consisting of four off-the-shelf inertial sensors and in-house capturing and analysis software. Besides the determination of standard gait parameters, the motion of the upper body (pelvis and spine) can be investigated. Kinematic data of 25 healthy individuals (age: 25.6±3.3 years) were collected using a test-retest design with 1 week between measurement sessions. We calculated different parameters for absolute [e.g. limits of agreement (LoA)] and relative reliability [intraclass correlation coefficients (ICC)]. Our results show excellent ICC values for most of the gait parameters. Midswing height (MH), height difference (HD) of initial contact (IC) and terminal contact (TC) and stride length (SL) are the gait parameters, which did not exhibit acceptable values representing absolute reliability. Moreover, the parameters derived from the motion of the upper body (pelvis and spine) show excellent ICC values or high correlations. Our results indicate that InvestiGAIT is suitable for reliable measurement of almost all the considered gait parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1515/bmt-2016-0067DOI Listing

Publication Analysis

Top Keywords

gait parameters
16
motion upper
12
upper body
12
inertial sensor-based
8
gait analysis
8
body pelvis
8
pelvis spine
8
excellent icc
8
icc values
8
gait
6

Similar Publications

Lower extremity joint kinematics in individuals with and without bilateral knee osteoarthritis during normal and narrow-base walking: A cross-sectional study.

Knee

December 2024

Geriatric Mental Health Research Center, Iran University of Medical Sciences, Tehran, Iran; Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran. Electronic address:

Background: Knee osteoarthritis (KOA) is a prevalent musculoskeletal disease affecting joint mechanics. Considering the effect of step-width changes on the biomechanics of gait, especially the alteration of stability dynamics during narrow-base gait, this study investigated the kinematic parameters of the lower extremities during both normal and narrow-base walking in individuals with and without KOA.

Methods: A cross-sectional study with 20 individuals with bilateral KOA and 20 controls was conducted.

View Article and Find Full Text PDF

Background: Foot drop is a common condition for patients with upper motor neuron syndrome such as cerebral palsy (CP). This study aimed to investigate the effects of functional electrical stimulation (FES) on gait function, quality of life, and FES satisfaction in adults with CP and foot drop. To analyze effects over time, an observational, longitudinal study was performed.

View Article and Find Full Text PDF

Effects of dynamic elastomeric fabric orthoses in children with cerebral palsy: A single-blind randomized controlled trial.

Prosthet Orthot Int

December 2024

Department of Physiotherapy and Rehabilitation Faculty of Health Sciences, Gazi University, Ankara, Turkey.

Background: The dynamic elastomeric fabric orthoses (DEFOs) are made of neoprene material, providing the right biomechanical alignment and afferent input in the trunk, pelvis, and extremities, potentially allowing individuals to actively participate in daily life.

Objective: The aim of this study was to investigate the effects of DEFOs applied to the lower trunk and pelvis, on balance, gait parameters, and pelvic symmetry in children with cerebral palsy (CP).

Study Design: An evaluator-blinded randomized controlled trial.

View Article and Find Full Text PDF

Objectives: This study aimed to analyze the effects of posteriorstabilized (PS) and cruciate-retaining (CR) total knee arthroplasty (TKA) on early postoperative three-dimensional (3D) dynamic and kinematic characteristics in patients with unilateral knee osteoarthritis (OA).

Patients And Methods: A retrospective analysis of prospectively collected data from 90 patients with unilateral TKA between February 2021 and September 2021 was conducted using a 3D kinematic analysis system before and six months after TKA. This patient group included 57 patients (10 males, 47 females; mean age: 69.

View Article and Find Full Text PDF

Window entrapment trauma in cats: clinical, neurological and clinicopathological findings and outcome (70 cases).

J Feline Med Surg

December 2024

Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.

Objectives: Window entrapment in cats can lead to reduced blood flow to the spinal cord, muscles and nerves, resulting in ischaemic neuromyelomyopathy. The severity and duration of entrapment greatly influence clinical and neurological outcomes, as well as prognosis. The aim of the present retrospective multicentric study (2005-2022) was to describe clinical, neurological and selected clinicopathological findings, as well as the outcome of cats trapped in bottom-hung windows, presented to both first-opinion and referral-only clinics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!