Non-noble metal catalysts with catalytic activity toward oxygen reduction reaction (ORR) comparable or even superior to that of Pt/C are extremely important for the wide application of metal-air batteries and fuel cells. Here, we develop a simple and controllable strategy to synthesize Fe-cluster embedded in FeC nanoparticles (designated as FeC(Fe)) encased in nitrogen-doped graphitic layers (NDGLs) with graphitic shells as a novel hybrid nanostructure as an effective ORR catalyst by directly pyrolyzing a mixture of Prussian blue (PB) and glucose. The pyrolysis temperature was found to be the key parameter for obtaining a stable FeC(Fe)@NDGL core-shell nanostructure with an optimized content of nitrogen. The optimized FeC(Fe)@NDGL catalyst showed high catalytic performance of ORR comparable to that of the Pt/C (20 wt %) catalyst and better stability than that of the Pt/C catalyst in alkaline electrolyte. According to the experimental results and first principle calculation, the high activity of the FeC(Fe)@NDGL catalyst can be ascribed to the synergistic effect of an adequate content of nitrogen doping in graphitic carbon shells and Fe-cluster pushing electrons to NDGL. A zinc-air battery utilizing the FeC(Fe)@NDGL catalyst demonstrated a maximum power density of 186 mW cm, which is slightly higher than that of a zinc-air battery utilizing the commercial Pt/C catalyst (167 mW cm), mostly because of the large surface area of the N-doped graphitic carbon shells. Theoretical calculation verified that O molecules can spontaneously adsorb on both pristine and nitrogen doped graphene surfaces and then quickly diffuse to the catalytically active nitrogen sites. Our catalyst can potentially become a promising replacement for Pt catalysts in metal-air batteries and fuel cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b13166 | DOI Listing |
Chemistry
December 2024
Harbin Institute of Technology - Weihai, School of Marine Science and Technoogy, No. 2 West Road, 264209, Weihai, CHINA.
Disulfide bonds (S-S) play a critical role in modern biochemistry, organic synthesis and prebiotic chemistry. Traditional methods for synthesizing disulfide bonds often rely on oxygen, alkali, and metal catalysts. Herein, thiol groups involved in amino acids and peptides were spontaneously converted into symmetrical and unsymmetrical disulfide bonds within water microdroplets, without the need for catalysts or oxygen, and under room temperature.
View Article and Find Full Text PDFChemSusChem
December 2024
TCG-CREST, Research Institute for Sustainable Energy (RISE), INDIA.
Hydrogen evolution reaction (HER) is a key reaction in electrochemical water splitting for hydrogen production leading to the development of potentially sustainable energy technology. Importantly, the catalysts required for HER must be earth-abundant for their large-scale deployment; silicates representing one such class. Herein, we have synthesized a series of transition mono- and bi- metal metasilicates (with SO32- group) using facile wet-chemical method followed by calcination at a higher temperature.
View Article and Find Full Text PDFOrg Lett
December 2024
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
We present a tandem aza-Heck/Suzuki cross-coupling reaction of -phenyl hydroxamic ethers with readily available arylboronic and alkenyl boronic acids. This protocol is enabled by a palladium catalyst paired with chiral phosphoramidite ligands, particularly under mild reaction conditions, yielding efficient and succinct synthetic routes to chiral isoindolinones with high enantioselectivity. Furthermore, this reaction exhibits excellent functional group compatibility and a rich diversity of subsequent transformations.
View Article and Find Full Text PDFChemistry
December 2024
Lanzhou University, College of Chemistry and Chemical Engineering, Lanzhou Tianshui south street 222, 730000, Lanzhou, CHINA.
Dual single-atom catalysts have attracted considerable research interest due to their higher metal atom loading and more flexible active sites compared to single-atom catalysts (SACs). We pioneered the one-step synthesis of sheets copper-cobalt graphitic carbon nitride dual single-atom (S-Cu/Co-g-C3N4) using folding fan-shaped aluminum foil as a template, and used them as catalysts in the epoxidation of styrene respectively. Through XAFS(X-ray Absorption Fine Structure) and other characterizations, it is found that Cu and Co single atoms are stabilized separately on g-C3N4 via coordination with nitrogen (N), hindered the ordered growth of sheets, and formed more pore structures, which not only increased more catalytically active sites, but also effectively prevented the flakes re-aggregate during the catalytic process.
View Article and Find Full Text PDFChemSusChem
December 2024
Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering, Luoyu load, 430074, Wuhan, CHINA.
Electrochemical carbon dioxide reduction reaction (CO2RR) to highly value-added C2+ fuels or chemicals is a promising pathway to address environment issues and energy crisis. In the periodic table, Cu as only the candidate can convert CO2 to C2+ products such as C2H4 and C2H5OH due to the suitable absorption energy to reaction intermediate. Application of Cu is limited for its low activity and poor selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!