Photoactive meso-tetra(4-pyridyl)porphyrin-tetrakis-[chloro(2,2'bipyridine)platinum(ii) derivatives recognize and cleave DNA upon irradiation.

Dalton Trans

Centro de Biologia Molecular Estrutural, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.

Published: January 2017

In this work, we evaluate the interaction of the peripheral Pt(bpy)Cl substituted porphyrins, H2PtPor and ZnPtPor with DNA using UV-vis, emission fluorescence, CD spectroscopy, and DNA melting properties altered by the Pt(ii)-porphyrinoid compounds. Additionally, we observe the ability of these porphyrin derivatives to generate O and to efficiently photocleave plasmid DNA upon visible light irradiation based on a mixed (oxidative/hydrolytic) mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6dt04634gDOI Listing

Publication Analysis

Top Keywords

photoactive meso-tetra4-pyridylporphyrin-tetrakis-[chloro22'bipyridineplatinumii
4
meso-tetra4-pyridylporphyrin-tetrakis-[chloro22'bipyridineplatinumii derivatives
4
derivatives recognize
4
recognize cleave
4
dna
4
cleave dna
4
dna irradiation
4
irradiation work
4
work evaluate
4
evaluate interaction
4

Similar Publications

Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au(GSH) NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation.

View Article and Find Full Text PDF

Finely Tailored Conjugated Small Molecular Nanoparticles for Near-Infrared Biomedical Applications.

Research (Wash D C)

January 2025

Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.

Near-infrared (NIR) phototheranostics (PTs) show higher tissue penetration depth, signal-to-noise ratio, and better biosafety than PTs in the ultraviolet and visible regions. However, their further advancement is severely hindered by poor performances and short-wavelength absorptions/emissions of PT agents. Among reported PT agents, conjugated small molecular nanoparticles (CSMNs) prepared from D-A-typed photoactive conjugated small molecules (CSMs) have greatly mediated this deadlock by their high photostability, distinct chemical structure, tunable absorption, intrinsic multifunctionality, and favorable biocompatibility, which endows CSMNs with more possibilities in biological applications.

View Article and Find Full Text PDF

Developing Orthogonal Fluorescent RNAs for Photoactive Dual-color Imaging of RNAs in Live Cells.

Angew Chem Int Ed Engl

January 2025

Hunan University, College of Chemistry and Chemical Engineering, Yuelushan, Changsha, Hunan, 410082, P.R.China, 410082, Changsha, CHINA.

Fluorogenic RNA aptamers have revolutionized the visualization of RNAs within complex cellular processes. A representative category of them employs the derivatives of green fluorescent protein chromophore, 4-hydroxybenzlidene imidazolinone (HBI), as chromophores. However, the structural homogeneity of their chromophoric backbones causes severe cross-reactivity with other homologous chromophores.

View Article and Find Full Text PDF

Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).

View Article and Find Full Text PDF

Visible light-responsive enrofloxacin PEC aptasensor based on CN QDs sensitized BiOBr nanosheets.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!