KB(PO)F: a novel acentric deep-ultraviolet material.

Dalton Trans

Fujian Provincial Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China.

Published: January 2017

Two challenges to grow KBeBOF (KBBF), the best known deep-ultraviolet nonlinear optical (NLO) material to date, are the limited crystal sizes and the use of a highly toxic element (Be). Herein we report on the discovery of a novel anhydrous non-centrosymmetric alkali fluorinated borophosphate KB(PO)F (KBPF) featuring a cut-off wavelength of less than 200 nm and a large second-harmonic generation (SHG) effect similar to KHPO (KDP), hence representing a new promising deep-ultraviolet NLO material. The KBPF crystals consisting of common elements can be grown using green and cost effective processes and do not show any detectable hygroscopicity. The title compound also features a 2-dimensional layer [BPOF] built from [BOF] and [PO] tetrahedral groups but has much stronger interlayer bonds than KBBF, allowing the growth of large crystals. The title compound has been characterized by PXRD, SEM, TG-DSC, FTIR, UV-Vis-NIR diffuse reflectance and SHG analyses as well as single-crystal X-ray structure refinements. The optical properties of KBPF have also been evaluated by first-principles calculations at the density functional theory (DFT) level.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6dt04026hDOI Listing

Publication Analysis

Top Keywords

nlo material
8
title compound
8
kbpof novel
4
novel acentric
4
acentric deep-ultraviolet
4
deep-ultraviolet material
4
material challenges
4
challenges grow
4
grow kbebof
4
kbebof kbbf
4

Similar Publications

Emergent Mid-Infrared Nonlinear Optical Candidates With Targeted Balance Performances.

Small

December 2024

Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi, 830011, China.

Infrared nonlinear optical (NLO) crystal materials exert a crucial role in laser technology, which is extensively utilized in the fields of medical laser, long-distance laser communication, infrared laser guidance, etc. Currently, the commercially available infrared NLO crystals are diamond-like structural crystals AgGaQ (Q = S, Se) and ZnGeP. However, their applications are significantly limited owing to their inherent drawbacks, such as low laser damage thresholds and narrow band gaps.

View Article and Find Full Text PDF

In recent years, hydroxyborates with excellent properties have attracted much attention. Through dedicated efforts, three new hydroxyborates-KBO(OH), CsBO(OH), and CsBO(OH)-have been successfully synthesized in a closed system. The ultraviolet (UV) cut-off edges of both KBO(OH) and CsBO(OH) are below 200 nm, indicating their potential as candidates for deep-ultraviolet (DUV) materials.

View Article and Find Full Text PDF

The discovery and synthesis of new NLO materials in the ultraviolet (UV) region are crucial to developing laser technology. The chemical substitution strategy is an effective pathway to design potential UV or DUV NLO crystals. Herein, two new compounds, KNaCaY(BO) and KNaCaLu(BO), have been synthesized using KBO·4HO as the template.

View Article and Find Full Text PDF

Cationic Coordination Modification Drives Birefringence and Nonlinear Effect Double Lifting in Sulfate.

Inorg Chem

December 2024

Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China.

As nonlinear optical (NLO) crystals, sulfates have the superiority of transparency for ultraviolet (UV) light, but they are often troubled by small nonlinear coefficients and birefringence owing to the high symmetry of the [SO] group. By introducing two neutral diethylenetriamine (DETA) molecules to replace the six coordinated water molecules of the [Zn(HO)] complex cation in [Zn(HO)](SO)(HO), a new sulfate with an acentric structure, namely, [Zn(DETA)](SO)(HO), has been designed and synthesized. Structural investigation reveals that the coordination modification of Zn ion tremendously enhances its intraoctahedral distortion.

View Article and Find Full Text PDF

In the present study, lanthanum oxytellurate (LOT) samples with varying La : Te ratios are successfully synthesized using a simple hydrothermal method that has enormous advantages. The prepared samples crystallize in a LaOTe composite phase with an orthorhombic crystal system. A nanorod-like morphology is observed for each sample, and the presence of constituent elements is verified from EDX results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!