Tuning of intrinsic antiferromagnetic to ferromagnetic ordering in microporous α-MnO by inducing tensile strain.

Phys Chem Chem Phys

Functional Materials Division, CSIR Central Electrochemical Research Institute (CECRI), Karaikudi-630 003, Tamil Nadu, India and Academy of Scientific & Innovative Research, CECRI, India.

Published: February 2017

By employing first principles density functional calculations, we investigated an α-MnO compound with a tunnel framework, which provides an eminent platform to alter the intrinsic antiferromagnetic (AFM) to ferromagnetic (FM) ordering, through the introduction of chemical or mechanical tensile strain. Our calculations further showed that the strength of FM ordering increases until 10% triaxial tensile strain. Since long range FM ordering is induced, it is realized to be superior as compared to the experimentally observed short-range FM ordering in oxygen-deficient compound. The driving force behind this superior effect is understood from the unusual electron occupancy in Mn atoms as a result of tetrahedral distortion in the MnO octahedra and an increase in the sp character of the oxygen atoms. Thus, the α-MnO compound belongs to a class of materials that exhibit good potential for piezomagnetic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp07259cDOI Listing

Publication Analysis

Top Keywords

tensile strain
12
intrinsic antiferromagnetic
8
ferromagnetic ordering
8
α-mno compound
8
ordering
5
tuning intrinsic
4
antiferromagnetic ferromagnetic
4
ordering microporous
4
microporous α-mno
4
α-mno inducing
4

Similar Publications

The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

The deformation behavior and instabilities occurring during the drawing of high-density polyethylene (HDPE) were investigated using wide- and small-angle X-ray scattering (WAXS and SAXS) and scanning electron microscopy (SEM) in plain HDPE and paraffin wax- and/or chloroform-modified samples. In contrast to neat HDPE, the modified materials demonstrated strongly suppressed cavitation. However, regardless of cavitation, the tensile deformation of all samples was found to be governed by crystallographic mechanisms active in the crystalline lamellae, supported by shear in the amorphous layers, i.

View Article and Find Full Text PDF

Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair.

View Article and Find Full Text PDF

The present work constitutes the initial experimental effort to characterise the dynamic tensile performance of basalt fibre grids employed in TRM systems. The tensile behaviour of a bi-directional basalt fibre grid was explored using a high-speed servo-hydraulic testing machine with specialised grips. Deformation and failure modes were captured using a high-speed camera.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!