The anisotropic superconducting properties of PbTaSe single crystal is reported. Superconductivity with T = 3.83 ± 0.02 K has been characterized fully with electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C (T) measurements using single crystal samples. The superconductivity is type-II with lower critical field H and upper critical field H of 65 and 450 Oe (H⊥ to the ab-plane), 140 and 1500 Oe (H|| to the ab-plane), respectively. These results indicate that the superconductivity of PbTaSe is anisotropic. The superconducting anisotropy, electron-phonon coupling λ , superconducting energy gap Δ, and the specific heat jump ΔC/γT at T confirms that PbTaSe can be categorized as a bulk superconductor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aa4edb | DOI Listing |
Sci Bull (Beijing)
January 2025
School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; Center for High Energy Physics, Peking University, Beijing 100871, China; Key Laboratory of Particle Acceleration Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Dark photons, as a minimal extension of the Standard Model through an additional Abelian gauge group, may propagate relativistically across the galaxy, originating from dark matter decay or annihilation, thereby contributing to a galactic dark photon background. The generation of dark photons typically favors certain polarization modes, which are dependent on the interactions between dark matter and dark photons. We introduce a framework in which a resonant cavity is utilized to detect and differentiate these polarizations, leveraging the daily variation in expected signals due to the anisotropic distribution of dark photons and the rotation of the Earth.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Indian Institute of Science, Bangalore 560012, India.
The quest for anisotropic superconductors has been a long-standing pursuit due to their potential applications in quantum computing. In this regard, experimentally, d-wave and anisotropic s-wave superconducting order parameters are predominantly observed, while p-wave superconductors remain largely elusive. Achieving p-wave superconductivity in topological phases is highly desirable, as it is considered suitable for creating topologically protected qubits.
View Article and Find Full Text PDFNPJ Quantum Mater
January 2025
NIST Center for Neutron Research, Gaithersburg, MD 20899 USA.
The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071, United States.
Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.
View Article and Find Full Text PDFSci Rep
January 2025
Water Management Research Institute, National Water Research Center, Shubra El-Kheima 13411, Cairo, Egypt.
The exploration of perovskite compounds incorporating actinide and divalent elements reveals remarkable characteristics. Focusing on PbBkO, RaBkO, and SrBkO, these materials were studied using density functional theory (DFT) via the CASTEP code to analyze their electronic, optical, and mechanical properties. The results show semiconductor behavior, with respective band gaps of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!