Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, the treatment of 4-nitrophenol (NP) in water by ozonation, electrolysis, electro-peroxone (EP), and photo-electro-peroxone (PEP) processes was investigated. PEP process is based on the combination of ozonation, UV irradiation, and electrolysis using a carbon felt cathode and a boron-doped diamond (BDD) anode. In this process, HO is electrochemically generated from reduction of O in the ozone generator effluent at a carbon felt cathode. The in situ generated HO is simultaneously decomposed by UV-photolysis and by reaction with O to form HO radicals that can rapidly and non-selectively oxidize organic pollutants. The results showed that PEP is the most efficient process for a rapid NP degradation in water than the other individual and combined methods. In addition, PEP process was able to completely remove total organic carbon (TOC) from NP solution after consumption of 4.1 kWh/kg TOC removed. Hydroquinone, 1,2,4-trihydroxybenzene, oxalic and maleic acids were identified as the main intermediates of NP degradation. The addition of iron to NP solution did not significantly affect the efficiency of PEP process. The results demonstrated that the incorporation of BDD anodes and UV light in PEP process can significantly enhance the kinetics and minimize energy requirements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2017.1284271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!