Novel 4-benzylamino benzo-anellated pyrrolo[2,3-b]pyridines have been synthesized with varied substitution patterns both at the molecular scaffold of the benzo-anellated ring and at the 4-benzylamino residue. With a structural similarity to substituted thieno[2,3-d]pyrimidines as epidermal growth factor receptor (EGFR) inhibitors, we characterized the inhibition of EGFR for our novel compounds. As receptor heterodimerization gained certain interest as mechanism of cancer cells to become resistant against novel protein kinase inhibitors, we additionally measured the inhibition of insulin-like growth factor receptor IGF-1R which is a prominent receptor for such heterodimerizations with EGFR. Structure-activity relationships are discussed for both kinase inhibitions depending on the varied substitution patterns. We discovered novel dual inhibitors of both receptor tyrosine kinases with interest for further studies to reduce inhibitor resistance developments in cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009933 | PMC |
http://dx.doi.org/10.1080/14756366.2016.1247062 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold of Zhengzhou University, Zhengzhou 450000, China.
Planar 1D photonic crystals (1DPhCs), owing to their photonic bandgaps (PBGs) formed by unique structural interference, are widely utilized in light protection applications. Multifunctional coatings that integrate various light management functions are highly desired. In this study, we present the fabrication of dual-PBG 1DPhCs with high reflectance in both the blue and near-infrared (NIR) regions.
View Article and Find Full Text PDFDiabetes Ther
January 2025
The State Key Laboratory Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
Introduction: Scientific publications have shown sodium-glucose co-transporter-2 (SGLT2) inhibitors to have several beneficial effects in patients with complex type 2 diabetes mellitus (T2DM). However, sodium-glucose co-transporter-1 (SGLT-1) inhibitor is still under investigation in clinical trials. Recently, a dual inhibitor of sodium-glucose co-transporter (SGLT1/2), sotagliflozin, has been approved for use in patients with T2DM.
View Article and Find Full Text PDFPlant Commun
January 2025
College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
High-temperature stress, also referred to as heat stress, often has detrimental effects on plant growth and development. Phytochromes have been implicated in regulating plant heat stress responses, but the role of blue-light receptors, such as cryptochromes, in plant blue light-dependent heat stress response has remained unclear. We found that the blue light receptor cryptochrome 1 (CRY1) negatively regulates heat stress tolerance (thermotolerance) in Arabidopsis.
View Article and Find Full Text PDFJ Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFSci Rep
January 2025
Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, POB 26666, Sharjah, United Arab Emirates.
Graphene, a two-dimensional material featuring densely packed sp-hybridized carbon atoms arranged in a honeycomb lattice, has revolutionized material science. Laser-induced graphene (LIG) represents a breakthrough method for producing graphene from both commercial and natural precursors via direct laser writing, offering advantages such as simplicity, efficiency, and cost-effectiveness. This study demonstrates a novel approach to synthesize a composite material exclusively from a porous organic polymer (POP) by direct femtosecond laser writing on a compressed imide-linked porous organic polymer substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!