Bifunctional Brønsted Base Catalyst Enables Regio-, Diastereo-, and Enantioselective C -Alkylation of β-Tetralones and Related Aromatic-Ring-Fused Cycloalkanones.

Angew Chem Int Ed Engl

Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizabal 3, 20018, San Sebastián, Spain.

Published: February 2017

The catalytic asymmetric synthesis of both α-substituted and α,α-disubstituted (quaternary) β-tetralones through direct α-functionalization of the corresponding β-tetralone precursor remains elusive. A designed Brønsted base-squaramide bifunctional catalyst promotes the conjugate addition of either unsubstituted or α-monosubstituted β-tetralones to nitroalkenes. Under these reaction conditions, not only enolization, and thus functionalization, occurs at the α-carbon atom of the β-tetralone exclusively, but adducts including all-carbon quaternary centers are also formed in highly diastereo- and enantioselective manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201612332DOI Listing

Publication Analysis

Top Keywords

diastereo- enantioselective
8
bifunctional brønsted
4
brønsted base
4
base catalyst
4
catalyst enables
4
enables regio-
4
regio- diastereo-
4
enantioselective -alkylation
4
-alkylation β-tetralones
4
β-tetralones aromatic-ring-fused
4

Similar Publications

Enantioselective hydrogenation of tetrasubstituted alkenes to form 1,2-contiguous stereocenters is a particularly appealing but highly challenging transformation in asymmetric catalysis. Despite the notable progress achieved in enantioselective hydrogenation over the past decades, enantioselective hydrogenation of all-carbon tetrasubstituted alkenes containing multiple alkyl groups remains an unsolved challenge. Here, we report a rhodium-catalyzed highly diastereo- and enantioselective hydrogenation of diverse acyclic multisubstituted alkenes under mild conditions.

View Article and Find Full Text PDF

Nozaki-Hiyama-Kishi (NHK) reactions offer a mild approach for the formation of alcohol motifs through radical-polar crossover-based pathways from various radical precursors. However, the application of multicomponent NHK-type reactions, which allow the formation of multiple bonds in a single step, has been largely restricted to bulky alkyl radical precursors, thus limiting their expanded utilization. Herein, we disclose a general three-component NHK-type reaction enabled by delayed radical-polar crossover, which efficiently tolerates a plethora of radical precursors that were previously unavailable.

View Article and Find Full Text PDF

A highly regio-, enantio- and diastereo-selective strategy involving initial enantioselective conjugate addition to 4-nitro-5-styrylisoxazoles serves as a key step for the desymmetrization of 2,5-cyclohexadienones has been disclosed. We have designed a new class of 2,5-cyclohexadienones appended with 4-nitro-5-styrylisoxazoles to undergo organocatalytic asymmetric double or triple conjugate addition in a domino sequence depending on the substrate type leading to desymmetrization of the 2,5-cyclohexadienone core. The developed protocol allows the construction of a valuable hydrophenanthrene core or a unique bridged scaffold bearing multiple chiral centers with excellent enantio- (up to >99.

View Article and Find Full Text PDF

Photoredox/Cobalt-Catalyzed Chemo-, Regio-, Diastereo- and Enantioselective Reductive Coupling of 1,1-Disubstituted Allenes and Cyclobutenes.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.

A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86 % yield, >98 : 2 chemo- and regioselectivity, >98 : 2 dr and >99.5:0.

View Article and Find Full Text PDF

The chiral amine catalyzed diastereo- and enantioselective [3 + 2] cycloaddition between isatin-derived azomethine ylides and α,β-unsaturated aldehydes was successfully carried out to afford spiro[oxindole-3,2'-pyrrolidine]s. It was anticipated that the formation of azomethine ylides occurred the cycloreversion of dispirooxindole-imidazolidines, which are precursor imine homodimers, in aqueous solvents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!