Hypoxia can affect various fish populations, including yellow perch Perca flavescens, which is an economically and ecologically important species in Lake Erie, a freshwater system that often experiences hypoxia in the hypolimnetic part of the lake. Fish, similarly to mammals, possess molecular oxygen sensor-hypoxia-inducible factor-1 (HIF-1), a transcription factor that can affect expression of many downstream genes related to animal growth and locomotion, protein synthesis, as well as ATP and amino acid metabolism. HIF-1 is a heterodimer, which consists of two subunits: oxygen-sensitive and oxygen-insensitive subunits, α and β, respectively. In this study, we report first on the molecular cloning and sequencing of P. flavescens HIF-1α. The full-length complementary DNA (cDNA) was isolated and submitted to the GenBank with accession number KT783483. It consists of 3529 base pairs (bp) carrying a single open-reading frame that encompasses 2250 bp of the coding region, 247 bp of the 5' untranslated region (UTR), and 1032 bp of the 3' UTR. The "de novo" prediction of the 3D structure of HIF-1α protein, which consists of 749 amino acids, is presented, too. We then utilized One-Step Taqman® real-time RT-PCR technology to monitor changes in HIF-1α messenger RNA (mRNA) copies in response to chronic hypoxic stress. An experiment was conducted using 14-day post-swim-up stage yellow perch larvae with uninflated swim bladders. This experiment included three treatment groups: hypoxia, mid-hypoxia, and normoxia, in four replicates (four tanks per treatment) with the following dissolved oxygen levels: 3, 4, and >7 mg O/L, respectively. At the end (2 weeks) and in the middle (1 week) of the experiment, fish from each tank were sampled for body measurements and molecular biology analysis. The results showed no differences in survival (∼90%) between treatment groups. Oxygen concentration was lowered to 3.02 ± 0.15 (mean ± SE) mg O/L with no adverse effect on fish survival. The highest growth rate was observed in the normoxic group. A similar trend was observed with fish body length. The growth rate of fish declined with decreasing water-dissolved oxygen. The number of HIF-1α mRNA copies was not significantly different between hypoxic, mid-hypoxic, and normoxic conditions, and this was true for fish obtained in the middle and at the end of the experiment. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-017-0340-9DOI Listing

Publication Analysis

Top Keywords

yellow perch
12
perch perca
8
perca flavescens
8
mrna copies
8
treatment groups
8
growth rate
8
fish
7
expression hypoxia-inducible
4
hypoxia-inducible factor-1α
4
factor-1α gene
4

Similar Publications

Anthropogenic activities can significantly impact wildlife in natural water bodies, affecting not only the host's physiology but also its microbiome. This study aimed to analyze the gut microbiome and antimicrobial resistance gene profile (i.e.

View Article and Find Full Text PDF

Incorporating habitat use and life history to predict PCB residues in wild fish in an urban estuary.

Mar Pollut Bull

December 2024

United States Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA.

Owing to the heterogenous distribution of contaminated sediments in urban estuaries, contaminant residues, such as polychlorinated biphenyls (PCBs), in fish tissue can vary widely. To investigate the relationship between PCBs in fish tissue and heterogeneity of PCBs in sediment, we developed a geospatial Biota-Sediment Accumulation Factor (BSAF) model for an urban estuary. The model predicts whole fish total PCB residues at a scale of 0.

View Article and Find Full Text PDF

Novel introductions of largemouth bass, Micropterus salmoides, often cause negative impacts on endemic populations of prey fishes and interspecific competitors. Although many studies have investigated trophic interactions between M. salmoides and smallmouth bass, Micropterus dolomieu, few have included chain pickerel, Esox niger, as a competitor despite similarities in their habitat use.

View Article and Find Full Text PDF

Increased mercury concentrations in walleye and yellow perch in lakes invaded by zebra mussels.

Sci Total Environ

December 2024

Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55108, United States of America. Electronic address:

Article Synopsis
  • Zebra mussels are invasive species that can change aquatic ecosystems and food webs, potentially increasing mercury levels in fish, yet their impact in inland lakes hadn't been previously studied.
  • In Minnesota lakes with zebra mussels, adult walleye and yellow perch showed mercury levels 72% and 157% higher, respectively, compared to lakes without them, with young fish also having elevated mercury concentrations.
  • These higher mercury levels in invaded lakes raise concerns for fisheries management and human health, especially since many walleye exceeded safe consumption thresholds more frequently than in uninvaded lakes.
View Article and Find Full Text PDF

Optimal egg size theory implies that female organisms balance between fecundity and individual offspring investment according to their environment. Past interspecific studies suggest that fishes in large marine systems generally produce smaller eggs than those in small freshwater systems. We tested whether intraspecific egg size variation reflected a similar pattern by comparing egg size among yellow perch () populations inhabiting a range of system sizes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!