Hypoxia can affect various fish populations, including yellow perch Perca flavescens, which is an economically and ecologically important species in Lake Erie, a freshwater system that often experiences hypoxia in the hypolimnetic part of the lake. Fish, similarly to mammals, possess molecular oxygen sensor-hypoxia-inducible factor-1 (HIF-1), a transcription factor that can affect expression of many downstream genes related to animal growth and locomotion, protein synthesis, as well as ATP and amino acid metabolism. HIF-1 is a heterodimer, which consists of two subunits: oxygen-sensitive and oxygen-insensitive subunits, α and β, respectively. In this study, we report first on the molecular cloning and sequencing of P. flavescens HIF-1α. The full-length complementary DNA (cDNA) was isolated and submitted to the GenBank with accession number KT783483. It consists of 3529 base pairs (bp) carrying a single open-reading frame that encompasses 2250 bp of the coding region, 247 bp of the 5' untranslated region (UTR), and 1032 bp of the 3' UTR. The "de novo" prediction of the 3D structure of HIF-1α protein, which consists of 749 amino acids, is presented, too. We then utilized One-Step Taqman® real-time RT-PCR technology to monitor changes in HIF-1α messenger RNA (mRNA) copies in response to chronic hypoxic stress. An experiment was conducted using 14-day post-swim-up stage yellow perch larvae with uninflated swim bladders. This experiment included three treatment groups: hypoxia, mid-hypoxia, and normoxia, in four replicates (four tanks per treatment) with the following dissolved oxygen levels: 3, 4, and >7 mg O/L, respectively. At the end (2 weeks) and in the middle (1 week) of the experiment, fish from each tank were sampled for body measurements and molecular biology analysis. The results showed no differences in survival (∼90%) between treatment groups. Oxygen concentration was lowered to 3.02 ± 0.15 (mean ± SE) mg O/L with no adverse effect on fish survival. The highest growth rate was observed in the normoxic group. A similar trend was observed with fish body length. The growth rate of fish declined with decreasing water-dissolved oxygen. The number of HIF-1α mRNA copies was not significantly different between hypoxic, mid-hypoxic, and normoxic conditions, and this was true for fish obtained in the middle and at the end of the experiment. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-017-0340-9 | DOI Listing |
One Health
December 2024
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, MN, USA.
Anthropogenic activities can significantly impact wildlife in natural water bodies, affecting not only the host's physiology but also its microbiome. This study aimed to analyze the gut microbiome and antimicrobial resistance gene profile (i.e.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
United States Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA.
Owing to the heterogenous distribution of contaminated sediments in urban estuaries, contaminant residues, such as polychlorinated biphenyls (PCBs), in fish tissue can vary widely. To investigate the relationship between PCBs in fish tissue and heterogeneity of PCBs in sediment, we developed a geospatial Biota-Sediment Accumulation Factor (BSAF) model for an urban estuary. The model predicts whole fish total PCB residues at a scale of 0.
View Article and Find Full Text PDFJ Fish Biol
November 2024
Canadian Rivers Institute, Fredericton, New Brunswick, Canada.
Novel introductions of largemouth bass, Micropterus salmoides, often cause negative impacts on endemic populations of prey fishes and interspecific competitors. Although many studies have investigated trophic interactions between M. salmoides and smallmouth bass, Micropterus dolomieu, few have included chain pickerel, Esox niger, as a competitor despite similarities in their habitat use.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55108, United States of America. Electronic address:
Optimal egg size theory implies that female organisms balance between fecundity and individual offspring investment according to their environment. Past interspecific studies suggest that fishes in large marine systems generally produce smaller eggs than those in small freshwater systems. We tested whether intraspecific egg size variation reflected a similar pattern by comparing egg size among yellow perch () populations inhabiting a range of system sizes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!