Impact of nanostructured thin ZnO film in ultraviolet protection.

Int J Nanomedicine

Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea.

Published: March 2017

Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216680PMC
http://dx.doi.org/10.2147/IJN.S118637DOI Listing

Publication Analysis

Top Keywords

thin zno
20
zno films
20
nanostructured thin
8
ultraviolet protection
8
zno
7
thin
5
films
5
impact nanostructured
4
zno film
4
film ultraviolet
4

Similar Publications

To advance off-grid energy solutions, developing flexible photobatteries capable of direct light charging is essential. This study presents an innovative photobattery architecture that incorporates zinc oxide (ZnO) as an electron-transporting and hole-blocking layer, combined with a hybrid methylammonium tin iodide composite with poly-triarylamine (MASnI/PTAA) for light absorption and hole transport. PTAA facilitates efficient hole transport to the anode, thereby enhancing charge separation and reducing recombination losses.

View Article and Find Full Text PDF

The combination of ZnO with narrow bandgap materials such as CuO is now a common method to synthesize high-performance optoelectronic devices. This study focuses on optimizing the performance of p-CuO/n-ZnO heterojunction pyroelectric photodetectors, fabricated through magnetron sputtering, by leveraging the pyro-phototronic effect. The devices' photoresponse to UV (365 nm) and visible (405 nm) lasers is thoroughly examined.

View Article and Find Full Text PDF

Antimony selenide (SbSe) shows promise for photovoltaics due to its favorable properties and low toxicity. However, current SbSe solar cells exhibit efficiencies significantly below their theoretical limits, primarily due to interface recombination and non-optimal device architectures. This study presents a comprehensive numerical investigation of SbSe thin-film solar cells using SCAPS-1D simulation software, focusing on device architecture optimization and interface engineering.

View Article and Find Full Text PDF

The Effect of H Fluence Irradiation on the Optical, Structural, and Morphological Properties of ZnO Thin Films.

Materials (Basel)

December 2024

Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.

Polycrystalline zinc oxide (ZnO) thin films were deposited on soda-lime glass substrates using the chemical spray pyrolysis method at 450 °C. The samples were irradiated with 8 keV H ions at three different fluences using a Colutron ion gun. The effects of the irradiation on the structural, morphological, and optical properties were studied with different techniques, including Rutherford Backscattering Spectrometry (RBS), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Ultraviolet and Visible Spectroscopy (UV-Vis).

View Article and Find Full Text PDF

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!