Aims: The prognosis of patients with intrahepatic cholangiocarcinoma (ICC) remains poor in terms of overall survival (OS) and recurrence rate. Mortalin, a stress chaperone, has been reported to be involved in carcinogenesis and metastasis. However, its role in ICC has not been defined.
Methods: Mortalin expression in tumour samples from patients with ICC was examined by Western blot and immunohistochemistry, and correlation between its expression and clinicopathological features was assessed. In addition, invasion, migration proliferation and apoptosis, and the expression of epithelial-mesenchymal transition (EMT)-related markers in ICC cells were assessed after mortalin depletion. Finally, the prognostic significance of mortalin in patients with ICC was further evaluated by Kaplan-Meier and Cox regression analysis.
Results: We provide evidence that expression of mortalin in human ICC tissues is higher than that in matched peritumoural tissues. The interference of mortalin expression inhibited the proliferation and invasion of ICC cells in vitro. Mechanistically, inhibition of mortalin expression in ICC cells upregulated E-cadherin expression and decreased vimentin and snail expression. Clinically, a high level of mortalin in ICC samples was associated with loss of E-cadherin, and increased expression of vimentin and snail. Patients with ICC and high mortalin expression had a shorter OS and a higher recurrence rate. Multivariate analysis revealed that mortalin overexpression was an independent prognostic indicator for patients with ICC.
Conclusions: Mortalin may promote cell proliferation and invasion via induction of EMT of ICC cells. A high level of mortalin may be used as a prognostic biomarker and therapeutic target for patients with ICC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jclinpath-2016-204251 | DOI Listing |
Cancers (Basel)
November 2024
Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242-1181, USA.
Oncogene
July 2024
Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
Mortalin (encoded by HSPA9) is a mitochondrial chaperone often overexpressed in cancer through as-yet-unknown mechanisms. By searching different RNA-sequencing datasets, we found that ESRRA is a transcription factor highly correlated with HSPA9 in thyroid cancer, especially in follicular, but not C cell-originated, tumors. Consistent with this correlation, ESRRA depletion decreased mortalin expression only in follicular thyroid tumor cells.
View Article and Find Full Text PDFCancer Cell Int
June 2024
Department of Health Examination Centre, Affiliated Yanbian University Hospital, Yanji, China.
Cell Stress Chaperones
April 2024
Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA. Electronic address:
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies characterized by abnormal hematopoietic cell maturation, increased apoptosis of bone marrow cells, and anemia. They are the most common myeloid blood cancers in American adults. The full complement of gene mutations that contribute to the phenotypes or clinical symptoms in MDS is not fully understood.
View Article and Find Full Text PDFCancer Lett
April 2024
Department of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518100, PR China; The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, PR China; Shenzhen Key Laboratory of Viral Oncology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 518100, PR China. Electronic address:
The role of RNA methyltransferase 3 (METTL3) in tumor progression when tethered to aberrantly expressed oncogenes remains unknown. In especial, the correlation between cervical cancer (CCa)-derived exosomes and m6A methylation in malignant traits of cervical epithelium is currently elusive. Mortalin expression was found to be up-regulated in plasma exosomes isolated from CCa patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!