Mixed-Metal Tungsten Oxide Photoanode Materials Made by Pulsed-Laser in Liquids Synthesis.

Chemphyschem

Beckman Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Mail Code 139-74, Pasadena, CA, 91125, USA.

Published: May 2017

Globally scalable sunlight-driven devices that convert solar energy into storable fuels will require efficient light absorbers that are made of non-precious elements. Suitable photoanode materials are yet to be discovered. Here we utilised the timesaving nature of pulsed-laser-in-liquids synthesis and prepared a series of neat and mixed-metal tungsten oxide photoanode materials to investigate the effect of ad-metals on optical and photocurrent generation properties. We obtained sub-μm-sized materials with different colours from W, Al, Ta, or first-row transition metal targets in water or aqueous ammonium metatungstate solutions. We observed metastable polymorphs of WO and tungsten oxides with varying degrees of oxygen deficiency. Pulsed-laser in liquids synthesis of Ni in ammonium metatungstate solutions produce hollow spheres (with ≤6 % Ni with respect to W). Photocurrent generation in strong aqueous acid is highest in mixed-metal tungsten oxide photoanode materials with around 5 % of iron or nickel.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201601285DOI Listing

Publication Analysis

Top Keywords

photoanode materials
16
mixed-metal tungsten
12
tungsten oxide
12
oxide photoanode
12
pulsed-laser liquids
8
liquids synthesis
8
photocurrent generation
8
ammonium metatungstate
8
metatungstate solutions
8
materials
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!