Non-Lytic Egression of Infectious Bursal Disease Virus (IBDV) Particles from Infected Cells.

PLoS One

Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.

Published: August 2017

Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is responsible for a devastating immunosuppressive disease affecting juvenile domestic chickens. IBDV particles are naked icosahedrons enclosing a bipartite double-stranded RNA genome harboring three open reading frames (ORF). One of these ORFs codes for VP5, a non-structural polypeptide dispensable for virus replication in tissue culture but essential for IBDV pathogenesis. Using two previously described recombinant viruses, whose genomes differ in a single nucleotide, expressing or not the VP5 polypeptide, we have analyzed the role of this polypeptide during the IBDV replication process. Here, we show that VP5 is not involved in house-keeping steps of the virus replication cycle; i.e. genome transcription/replication, protein translation and virus assembly. Although infection with the VP5 expressing and non-expressing viruses rendered similar intracellular infective progeny yields, striking differences were detected on the ability of their progenies to exiting infected cells. Experimental data shows that the bulk of the VP5-expressing virus progeny efficiently egresses infected cells during the early phase of the infection, when viral metabolism is peaking and virus-induced cell death rates are as yet minimal, as determined by qPCR, radioactive protein labeling and quantitative real-time cell death analyses. In contrast, the release of the VP5-deficient virus progeny is significantly abridged and associated to cell death. Taken together, data presented in this report show that IBDV uses a previously undescribed VP5-dependent non-lytic egress mechanism significantly enhancing the virus dissemination speed. Ultrastructural analyses revealed that newly assembled IBDV virions associate to a vesicular network apparently facilitating their trafficking from virus assembly factories to the extracellular milieu, and that this association requires the expression of the VP5 polypeptide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240931PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170080PLOS

Publication Analysis

Top Keywords

infected cells
12
cell death
12
virus
9
infectious bursal
8
bursal disease
8
disease virus
8
virus ibdv
8
ibdv particles
8
virus replication
8
vp5 polypeptide
8

Similar Publications

Background: Generalized lymphatic anomaly (GLA) is a rare congenital lymphatic malformation (LM) characterized by multiple infiltrating lymphangiomas in various tissues. Owing to its rarity, information on this disease is obtained mainly through case reports, leading to delayed diagnosis. In this study, we reported a case of generalized lymphatic anomaly in a pediatric patient manifesting as hemorrhagic pleural effusion.

View Article and Find Full Text PDF

Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS.

BMC Immunol

January 2025

Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.

Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).

Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.

View Article and Find Full Text PDF

Mediating role of blood metabolites in the relationship between immune cell traits and sepsis: a Mendelian randomization and mediation analysis.

Inflamm Res

January 2025

Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China.

Background: A significant association between immune cells and sepsis has been suggested by observational studies. However, the precise biological mechanisms underlying this association remain unclear. Therefore, we employed a Mendelian randomization (MR) approach to investigate the causal relationship between immune cells and genetic susceptibility to sepsis, and to explore the potential mediating role of blood metabolites.

View Article and Find Full Text PDF

Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) is widely expressed and integral to inflammatory and cell death responses. Autosomal recessive RIPK1-deficiency, due to biallelic loss of function mutations in RIPK1, is a rare inborn error of immunity (IEI) resulting in uncontrolled necroptosis, apoptosis and inflammation. Although hematopoietic stem cell transplantation (HSCT) has been suggested as a potential curative therapy, the extent to which disease may be driven by extra-hematopoietic effects of RIPK1-deficiency, which are non-amenable to HSCT, is not clear.

View Article and Find Full Text PDF

Severe COVID-19 can trigger a cytokine storm, leading to acute respiratory distress syndrome (ARDS) with similarities to superantigen-induced toxic shock syndrome. An outstanding question is whether SARS-CoV-2 protein sequences can directly induce inflammatory responses. In this study, we identify a region in the SARS-CoV-2 S2 spike protein with sequence homology to bacterial super-antigens (termed P3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!