Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Netherton syndrome (NS) is a severe skin disease caused by the loss of protease inhibitor LEKTI, which leads to the dysregulation of epidermal proteases and severe skin-barrier defects. KLK5 was proposed as a major protease in NS pathology, however its inactivation is not sufficient to rescue the lethal phenotype of LEKTI-deficient mice. In this study, we further elucidated the in vivo roles of the epidermal proteases in NS using a set of mouse models individually or simultaneously deficient for KLK5 and KLK7 on the genetic background of a novel NS-mouse model. We show that although the ablation of KLK5 or KLK7 is not sufficient to rescue the lethal effect of LEKTI-deficiency simultaneous deficiency of both KLKs completely rescues the epidermal barrier and the postnatal lethality allowing mice to reach adulthood with fully functional skin and normal hair growth. We report that not only KLK5 but also KLK7 plays an important role in the inflammation and defective differentiation in NS and KLK7 activity is not solely dependent on activation by KLK5. Altogether, these findings show that unregulated activities of KLK5 and KLK7 are responsible for NS development and both proteases should become targets for NS therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5283769 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1006566 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!