AI Article Synopsis

Article Abstract

Multiway array decomposition methods have been shown to be promising statistical tools for identifying neural activity in the EEG spectrum. They blindly decompose the EEG spectrum into spatial-temporal-spectral patterns by taking into account inherent relationships among signals acquired at different frequencies and sensors. Our study evaluates the stability of spatial-temporal-spectral patterns derived by one particular method, parallel factor analysis (PARAFAC). We focused on patterns' stability over time and in population and divided the complete data set containing data from 50 healthy subjects into several subsets. Our results suggest that the patterns are highly stable in time, as well as among different subgroups of subjects. Further, we show with simultaneously acquired fMRI data that power fluctuations of some patterns have stable correspondence to hemodynamic fluctuations in large-scale brain networks. We did not find such correspondence for power fluctuations in standard frequency bands, the common way of dealing with EEG data. Altogether, our results suggest that PARAFAC is a suitable method for research in the field of large-scale brain networks and their manifestation in EEG signal.

Download full-text PDF

Source
http://dx.doi.org/10.1162/NECO_a_00933DOI Listing

Publication Analysis

Top Keywords

eeg spectrum
12
large-scale brain
12
brain networks
12
multiway array
8
array decomposition
8
spatial-temporal-spectral patterns
8
power fluctuations
8
eeg
5
decomposition eeg
4
spectrum implications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!