Cell colonization of the surrounding environment is a very significant process in both physiological and pathological events. In order to understand the tissue regeneration process and thereby provide guidance principles for designing new biomaterials, it is of paramount importance to study the cell colonization in the presence of physical, chemical, and biological cues. Flat "gradient" materials are generally used with this purpose. Three dimensional gradient scaffolds mimicking more precisely the situation in vivo are somewhat more complex to fabricate and characterize. Scaffolds for Tissue Engineering (TE) made of hydrophobic synthetic polymers do not allow good cell colonization: far from their periphery, in fact, internal cell colonization is usually low. In this research poly-ε caprolactone (PCL) scaffolds have been "decorated" with chemical gradients both on top and along their thickness by means of cold plasma processes, in order to improve cell colonization of their core. Plasma treatments with a mixture of argon and oxygen (Ar/O), as well as plasma deposition of differently cross-linked poly(ethylene oxide) (PEO)-like coatings, have been performed. This study establishes that cross-linked PEO-like domains interspaced with native PCL ones deposited only on top of the scaffold (i.e., coating that penetrates less than 300 μm inside the scaffold) are more effective in promoting cell colonization across the scaffolds than the other tested materials including superhydrophilic samples and that ones produced by tested double step approaches. Last but not least, one result of this research is that, in the case of plasma coatings with low deposition rates and porous materials with a low pore interconnectivity, it is possible to improve penetration of low pressure plasma active species inside the scaffold's core thorough a pretreatment of the porous materials (i.e., penetration up to 4500 mm far from topside).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b14170DOI Listing

Publication Analysis

Top Keywords

cell colonization
28
internal cell
8
chemical gradients
8
porous materials
8
cell
7
colonization
7
plasma
6
scaffolds
5
improving internal
4
colonization porous
4

Similar Publications

Background And Objective: Oral bacteria can translocate to the intestine, and their colonization efficiency is influenced by the gastrointestinal tract pH. Understanding how oral bacteria resist acidic environments is crucial for elucidating their role in gut health and disease.

Methods: To investigate the mechanisms of acid resistance in oral bacteria, an in vitro gastrointestinal tract Dynamic pH Model was established.

View Article and Find Full Text PDF

Background: Lung cancer is a highly aggressive tumor with limited therapeutic options. The misregulation of Androgen Receptor (AR) signaling has been observed in lung cancer. Therefore, inhibiting AR signaling is a promising strategy for treating lung cancer.

View Article and Find Full Text PDF

Background: Salmonella enterica serovar Typhimurium is one of the most common serovars of Salmonella associated with clinical cases. It not only leads to diarrhea and mortality raised in livestock and poultry farming, but also poses a risk to food safety.

Results: In this study, a lytic bacteriophage named ZK22 was isolated and identified from sewage.

View Article and Find Full Text PDF

Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment.

Nat Commun

January 2025

Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined.

View Article and Find Full Text PDF

Lactic acid in the vaginal milieu modulates the -host interaction.

Virulence

December 2025

Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T he Netherlands.

Vulvovaginal candidiasis (VVC) is one of the most common infections caused by . VVC is characterized by an inadequate hyperinflammatory response and clinical symptoms associated with colonization of the vaginal mucosa. Compared to other host niches in which can cause infection, the vaginal environment is extremely rich in lactic acid that is produced by the vaginal microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!