Reactive multilayer films (RMFs) can be integrated into semiconducting electronic structures with the use of microelectromechanical systems (MEMS) technology and represent potential applications in the advancement of microscale energy-demanding systems. In this study, aluminum/molybdenum trioxide (Al/MoO)-based RMFs with different modulation periods were integrated on a semiconductor bridge (SCB) using a combination of an image reversal lift-off process and magnetron sputtering technology. This produced an energetic semiconductor bridge (ESCB)-chip initiator with controlled ignition performance. The effects of the Al/MoO RMFs with different modulation periods on ignition properties of the ESCB initiator were then systematically investigated in terms of flame duration, maximum flame area, and the reaction ratio of the RMFs. These microchip initiators achieved flame durations of 60-600 μs, maximum flame areas of 2.85-17.61 mm, and reaction ratios of ∼14-100% (discharged with 47 μF/30 V) by simply changing the modulation periods of the Al/MoO RMFs. This behavior was also consistent with a one-dimensional diffusion reaction model. The microchip initiator exhibited a high level of integration and proved to have tuned ignition performance, which can potentially be used in civilian and military applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b14662DOI Listing

Publication Analysis

Top Keywords

ignition performance
12
semiconductor bridge
12
modulation periods
12
microchip initiator
8
reactive multilayer
8
multilayer films
8
rmfs modulation
8
al/moo rmfs
8
maximum flame
8
rmfs
5

Similar Publications

The majority of industries throughout the world rely largely on fossil fuels as their primary energy source. However, these resources are finite and become scarcer by the day. Therefore, exploring alternative fuels and additives for diesel fuel is imperative to mitigate fuel consumption.

View Article and Find Full Text PDF

The single-atom skeletal editing technology is an efficient method for constructing molecular skeletons, which has broad coverage in synthetic chemistry. However, its potential in the preparation of energetic heterocyclic molecules is grossly underexplored. In this work, an unexpected one-step reaction for the synthesis of novel energetic molecules was discovered which combines single-atom skeletal editing, -dinitromethyl functionalization, and zwitterionization in one step.

View Article and Find Full Text PDF

As the parameter size of large language models (LLMs) continues to expand, there is an urgent need to address the scarcity of high-quality data. In response, existing research has attempted to make a breakthrough by incorporating federated learning (FL) into LLMs. Conversely, considering the outstanding performance of LLMs in task generalization, researchers have also tried applying LLMs within FL to tackle challenges in relevant domains.

View Article and Find Full Text PDF

This study explores the integration of nanotechnology and Long Short-Term Memory (LSTM) machine learning algorithms to enhance the understanding and optimization of fuel spray dynamics in compression ignition (CI) engines with varying bowl geometries. The incorporation of nanotechnology, through the addition of nanoparticles to conventional fuels, improves fuel atomization, combustion efficiency, and emission control. Simultaneously, LSTM models are employed to analyze and predict the complex spray behavior under diverse operational and geometric conditions.

View Article and Find Full Text PDF

The storage and release of energy is an economic cornerstone. In quantum dots (QDs), energy storage is mostly governed by their surfaces, in particular by surface chemistry and faceting. The impact of surface free energy (SFE) through surface faceting has already been studied in QDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!