Purpose: Glaucoma damages the retinal nerve fiber layer (RNFL). Both RNFL thickness and retardance can be used to assess the damage, but birefringence, the ratio of retardance to thickness, is a property of the tissue itself. This study investigated the relationship between axonal cytoskeleton and RNFL birefringence in retinas with hypertensive damage.
Materials And Methods: High intraocular pressure (IOP) was induced unilaterally in rat eyes. RNFL retardance in isolated retinas was measured. Cytostructural organization and bundle thickness were evaluated by confocal imaging of immunohistochemical staining of the cytoskeletal components: microtubules (MTs), F-actin, and neurofilaments. Bundles with different appearances of MT stain were studied, and their birefringence was calculated at different radii from the optic nerve head (ONH) center.
Results: Forty bundles in eight normal retinas and 37 bundles in 10 treated retinas were examined. In normal retinas, the stain of axonal cytoskeleton was approximately uniform within bundles, and RNFL birefringence did not change along bundles. In treated retinas, elevation of IOP caused non-uniform alteration of axonal cytoskeleton across the retina, and distortion of axonal MTs was associated with decreased birefringence. The study further demonstrated that change of RNFL birefringence profiles along bundles can imply altered axonal cytoskeleton, suggesting that ultrastructural change of the RNFL can be inferred from clinical measurements of RNFL birefringence. The study also demonstrated that measuring RNFL birefringence profiles along bundles, instead of at a single location, may provide a more sensitive way to detect axonal ultrastructural change.
Conclusions: Measurement of RNFL birefringence along bundles can provide estimation of cytoskeleton alteration and sensitive detection of glaucomatous damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088753 | PMC |
http://dx.doi.org/10.1080/02713683.2016.1262043 | DOI Listing |
Photodiagnosis Photodyn Ther
June 2024
In Eye Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China. Electronic address:
Background: Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM) and is a leading cause of vision loss. Early detection of DR-related neurodegenerative changes is crucial for effective management and prevention of vision loss in diabetic patients.
Methods: In this study, we employed spectral-domain polarization-sensitive optical coherence tomography (SD PS-OCT) to assess retinal nerve fiber layer (RNFL) changes in 120 eyes from 60 types 1 DM patients without clinical DR and 60 age-matched healthy controls.
Invest Ophthalmol Vis Sci
November 2022
Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria.
Purpose: To study the circumpapillary retinal nerve fiber layer (RNFL) birefringence (BIR) of early glaucoma and age-matched healthy eyes using polarization-sensitive optical coherence tomography (PS-OCT).
Methods: In this prospective cross-sectional study, we compared virtual circular PS-OCT B-scans with a diameter of 3.5 mm centered on the optic disc (OD) acquired with a PS-OCT prototype (860 nm center wavelength).
Two designs with a multiplexed superluminescent diode for ultra-high-resolution spectral-domain polarization-sensitive optical coherence tomography (UHR-PS-OCT) are introduced. In the first design, a Wollaston prism separates orthogonal polarization states next to each other on one linescan camera; the other design uses a beam displacer to separate orthogonal states onto two lines of a linescan camera with multiple rows of detectors. The coherence lengths measured with the two systems were 3.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
April 2021
Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria.
Purpose: To study birefringence of the peripapillary retinal nerve fiber layer (RNFL) of diabetic eyes with no clinical signs of diabetic retinopathy (DR) or mild to moderate DR stages using spectral-domain polarization-sensitive (PS) optical coherence tomography (OCT).
Methods: In this observational pilot study, circular PS-OCT scans centered on the optic nerve head were recorded in prospectively recruited diabetic and age-matched healthy eyes. From averaged circumpapillary intensity and retardation tomograms plots of RNFL birefringence were obtained by a linear fit of retardation versus depth within the RNFL tissue for each A-scan position and mean birefringence values for RNFL calculated.
Transl Vis Sci Technol
October 2020
Department of Physics and Astronomy, LaserLab Amsterdam, Vrije Universiteit de Boelelaan, Amsterdam, The Netherlands.
Purpose: The purpose of this paper was to determine the architecture of the collagen fibers of the peripapillary sclera, the retinal nerve fiber layer (RNFL), and Henle's fiber layer in vivo in 3D using polarization-sensitive optical coherence tomography (PS-OCT).
Methods: Seven healthy volunteers were imaged with our in-house built PS-OCT system. PS-OCT imaging included intensity, local phase retardation, relative optic axis, and optic axis uniformity (OAxU).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!