Here, we present an integrated experimental and theoretical study of H dynamic nuclear polarization (DNP) of a frozen aqueous glass containing free radicals at 7 T, under static conditions and at temperatures ranging between 4 and 20 K. The DNP studies were performed with a home-built 200 GHz quasi-optics microwave bridge, powered by a tunable solid-state diode source. DNP using monochromatic and continuous wave (cw) irradiation applied to the electron paramagnetic resonance (EPR) spectrum of the radicals induces the transfer of polarization from the electron spins to the surrounding nuclei of the solvent and solutes in the frozen aqueous glass. In our systematic experimental study, the DNP enhanced H signals are monitored as a function of microwave frequency, microwave power, radical concentration, and temperature, and are interpreted with the help of electron spin-lattice relaxation times, experimental MW irradiation parameters, and the electron spectral diffusion (eSD) model introduced previously. This comprehensive experimental DNP study with mono-nitroxide radical spin probes was accompanied with theoretical calculations. Our results consistently demonstrate that eSD effects can be significant at 7 T under static DNP conditions, and can be systematically modulated by experimental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp06893f | DOI Listing |
J Chem Theory Comput
December 2024
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Ch 149, Hamburg 22761, Germany.
High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.
View Article and Find Full Text PDFAcc Chem Res
December 2024
Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.
ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Aromatic organometallic complexes, such as ferrocene and the "inverse sandwich complex" [NaCp], are stabilized via charge-transfer (C-T) interactions and cation-π interactions (i.e., charge-induced dipole and charge-quadrupole interactions).
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
NiO is a wide-bandgap p-type metal oxide that has extensive applications in optoelectronics and photocatalysts. Understanding the carrier dynamics in p-type NiO is pivotal for optimizing device performance, yet they remain largely unexplored. In this study, we employed femtosecond transient absorption spectroscopy to delve into the dynamics of photogenerated carriers in NiO films containing distinct prominent native defects: undoped NiO with oxygen vacancies () and O-rich NiO (denoted as NiO) with nickel vacancies ().
View Article and Find Full Text PDFFood Chem
December 2024
Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan.
Development of a reliable tool to detect hydrogen peroxide (HO) and rutin in food-derived products and bioactive flavonoids is essential for food safety. Nevertheless, food/drug-based real samples are complex matrices that affect the sensor's specificity and sensitivity. For this purpose, we developed a simple electrochemical detection platform using covalent organic framework‑silver nanoparticles (COF-AgNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!