Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials.

Nat Commun

Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, CFM CSIC-UPV/EHU, San Sebastián 20018, Spain.

Published: January 2017

Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, NaBi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet-Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247574PMC
http://dx.doi.org/10.1038/ncomms13940DOI Listing

Publication Analysis

Top Keywords

dirac semimetal
8
dirac
5
creating stable
4
stable floquet-weyl
4
floquet-weyl semimetals
4
semimetals laser-driving
4
laser-driving dirac
4
dirac materials
4
materials tuning
4
tuning stabilizing
4

Similar Publications

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.

View Article and Find Full Text PDF

The fundamental characteristics of collective interactions in topological band structures can be revealed by the exploration of charge screening in topological materials. In particular, distinct anisotropic screening behaviors are predicted to occur in Dirac nodal line semimetals (DNLSMs) due to their peculiar anisotropic low-energy dispersion. Despite the recent extensive theoretical research, experimental observations of exotic charge screening in DNLSMs remain elusive, which is partly attributed to the coexisting trivial bands near the Fermi energy.

View Article and Find Full Text PDF

Artificial honeycomb lattices are essential for understanding exotic quantum phenomena arising from the interplay between Dirac physics and electron correlation. This work shows that the top two moiré valence bands in rhombohedral-stacked twisted MoS bilayers (tb-MoS) form a honeycomb lattice with massless Dirac fermions. The hopping and Coulomb interaction parameters are explicitly determined based on large-scale ab initio calculations.

View Article and Find Full Text PDF

Atomic Manipulation on 2D Sumanene for Precise Fermi Level Positioning in Ultrafast High-Capacity Alkali Metal Batteries.

Nano Lett

January 2025

State Key Laboratory of Structural Analysis for Industrial Equipment & School of Physics, Dalian University of Technology, Dalian 116024 People's Republic of China.

Article Synopsis
  • A sumanene monolayer with a unique Kagome-like lattice features two flat bands and two Dirac cones, which can be designed using carbon clusters.
  • First-principles simulations show that surface charge doping can effectively adjust the Fermi level between these bands, allowing for the transformation of the semiconducting monolayer into a semimetal using Li/Na/K atoms.
  • This doped sumanene exhibits high theoretical storage capacity, rapid charge capability, and exceptional structural stability, making it an attractive anode material for alkali-metal batteries.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!