A major challenge in ecology, conservation and global-change biology is to understand why biodiversity responds differently to similar environmental changes. Contingent biodiversity responses may depend on how disturbance and dispersal interact to alter variation in community composition (β-diversity) and assembly mechanisms. However, quantitative syntheses of these patterns and processes across studies are lacking. Using null-models and meta-analyses of 22 factorial experiments in herbaceous plant communities across Europe and North America, we show that disturbance diversifies communities when dispersal is limited, but homogenises communities when combined with increased immigration from the species pool. In contrast to the hypothesis that disturbance and dispersal mediate the strength of niche assembly, both processes altered β-diversity through neutral-sampling effects on numbers of individuals and species in communities. Our synthesis suggests that stochastic effects of disturbance and dispersal on community assembly play an important, but underappreciated, role in mediating biotic homogenisation and biodiversity responses to environmental change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.12733DOI Listing

Publication Analysis

Top Keywords

disturbance dispersal
12
effects disturbance
8
biodiversity responses
8
dispersal
5
disturbance
5
dispersal neutral
4
neutral sampling
4
sampling mediate
4
mediate contingent
4
contingent effects
4

Similar Publications

The future climatic niche of interior Douglas-fir (Pseudotsuga menziesii var. glauca [Mirb.] Franco) is expected to have little spatial overlap with its current range due to climate change.

View Article and Find Full Text PDF

Interest in preventative dietary interventions for human health has increasingly focused on the endocannabinoid (eCB)-like compound palmitoylethanolamide (PEA), a bioactive lipid mediator with anti-inflammatory, analgesic, and neuroprotective properties. This Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020-compliant systematic review aimed at collecting and comprehensively discussing all available data from Randomized Controlled Trials (RCTs) evaluating the efficacy and tolerability of PEA supplementation across human illnesses in patient populations. Overall, 48 eligible outputs from 47 RCTs were extracted, covering neuropsychiatric ( = 15), neurological ( = 17), somatic ( = 13), and visceral ( = 11) disturbances, as well as PEA effects on blood/plasma or other tissue biomarkers ( = 10).

View Article and Find Full Text PDF

The trait-based partitioning of species plays a critical role in biodiversity-ecosystem function relationships. This niche partitioning drives and depends on community structure, yet this link remains elusive in the context of a metacommunity, where local community assembly is dictated by regional dispersal alongside local environmental conditions. Hence, elucidating the coupling of niche partitioning and community structure needs spatially explicit studies.

View Article and Find Full Text PDF

The Asian Needle Ant, (Hymenoptera: Formicidae), has spread throughout a substantial portion of the southeastern United States where it has primarily been restricted to low elevations. We focused on the . invasion in Great Smoky Mountains National Park (GSMNP).

View Article and Find Full Text PDF

Impact of sediment resuspension on near-bottom mercury dynamics: Insights from a Baltic Sea experiment.

J Hazard Mater

January 2025

Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry and Biochemistry, Powstańców Warszawy 55, Sopot 81-712, Poland.

Marine sediments are major sources of legacy pollution, capable of releasing toxic mercury (Hg) into the water column when disturbed. This study evaluated Hg remobilization from surface sediments during resuspension events by examining sediment properties, Hg concentrations, and speciation. Research was conducted in the southern Baltic Sea, representing diverse environmental conditions and human impacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!