Key Points: Pre-ischaemic administration of aminooxiacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against ischaemia-reperfusion injury. The underlying mechanism remains unknown. We examined whether transient inhibition of the MAS during ischaemia and early reperfusion by AOA treatment could prevent mitochondrial damage at later reperfusion. The AOA treatment preserved mitochondrial respiratory capacity with reduced mitochondrial oxidative stress during late reperfusion to the same extent as ischaemic preconditioning (IPC). However, AOA treatment, but not IPC, reduced the myocardial interstitial concentration of tricarboxylic acid cycle intermediates at the onset of reperfusion. The results obtained in the present study demonstrate that metabolic regulation by inhibition of the MAS at the onset of reperfusion may be beneficial for the preservation of mitochondrial function during late reperfusion in an IR-injured heart.
Abstract: Mitochondrial dysfunction plays a central role in ischaemia-reperfusion (IR) injury. Pre-ischaemic administration of aminooxyacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against IR injury, although the underlying mechanism remains unknown. We hypothesized that a transient inhibition of the MAS during ischaemia and early reperfusion could preserve mitochondrial function at later phase of reperfusion in the IR-injured heart to the same extent as ischaemic preconditioning (IPC), which is a well-validated cardioprotective strategy against IR injury. In the present study, we show that pre-ischaemic administration of AOA preserved mitochondrial complex I-linked state 3 respiration and fatty acid oxidation during late reperfusion in IR-injured isolated rat hearts. AOA treatment also attenuated the excessive emission of mitochondrial reactive oxygen species during state 3 with complex I-linked substrates during late reperfusion, which was consistent with reduced oxidative damage in the IR-injured heart. As a result, AOA treatment reduced infarct size after reperfusion. These protective effects of MAS inhibition on the mitochondria were similar to those of IPC. Intriguingly, the protection of mitochondrial function by AOA treatment appears to be different from that of IPC because AOA treatment, but not IPC, downregulated myocardial tricarboxilic acid (TCA)-cycle intermediates at the onset of reperfusion. MAS inhibition thus preserved mitochondrial respiratory capacity and decreased mitochondrial oxidative stress during late reperfusion in the IR-injured heart, at least in part, via metabolic regulation of TCA cycle intermediates in the mitochondria at the onset of reperfusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471420 | PMC |
http://dx.doi.org/10.1113/JP273408 | DOI Listing |
J Environ Manage
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:
In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.
View Article and Find Full Text PDFWater Res
January 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China. Electronic address:
Hydroxylamine (HA) dosing is an effective strategy for promoting partial nitrification (PN); however, its impact on endogenous denitrification remains underexplored. In this study, long-term continuous HA dosing (1.4 mg/L) was introduced for over 110 days in a pilot-scale anaerobic/aerobic/anoxic (AOA) system treating municipal wastewater (66.
View Article and Find Full Text PDFAmmonia oxidation plays a vital role in regulating soil nitrogen (N) cycle in agricultural soil, which is significantly influenced by different fertilizer regimes. However, there is still need to further investigate the effects of different fertilizer managements on rhizosphere soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) community in the double-cropping rice field. Therefore, the effects of different long-term (37 years) fertilizer managements on rhizosphere soil potential nitrification activity (PNA), AOA and AOB community structure, and its relationship under the double-cropping rice system in southern of China were studied in the present paper.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging (CMI), Copenhagen University Hospital, Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark.
: In oral and oropharyngeal squamous cell carcinoma (OSCC, OPSCC), frequent inadequate surgical margins highlight the importance of precise intraoperative identification and delineation of cancerous tissue for improving patient outcomes. : A prospective, open-label, single-center, single dose, exploratory phase II clinical trial (EudraCT 2022-001361-12) to assess the efficacy of the novel uPAR-targeting near-infrared imaging agent, FG001, for intraoperative detection of OSCC and OPSCC. Macroscopic tumor detection was quantified with sensitivity and intraoperative tumor-to-background ratio (TBR).
View Article and Find Full Text PDFDev Cell
December 2024
Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Electronic address:
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!