AI Article Synopsis

  • Silver-based devices activated by low intensity direct current (LIDC) show promise for localized antimicrobial treatment due to their ability to generate silver ions at the implantation site.
  • In vitro tests indicated that these devices effectively killed methicillin-resistant Staphylococcus aureus (MRSA) over 48 hours at specified current levels, demonstrating strong antibacterial activity.
  • However, while the system was effective against bacteria, it also exhibited cytotoxic effects on nearby human cells, indicating a trade-off between antimicrobial efficacy and potential harm to tissues.

Article Abstract

Silver-based devices activated by electric current are of interest in biomedicine because of their broad-spectrum antimicrobial activity. This study investigates the in vitro antibacterial efficacy and cytotoxicity of a low intensity direct current (LIDC)-activated silver-titanium implant system prototype designed for localized generation and delivery of silver ions at the implantation site. First, the antibacterial efficacy of the system was assessed against methicillin-resistant Staphylococcus aureus (MRSA) over 48 h at current levels of 3 and 6 µA in Mueller-Hinton broth. The cytotoxicity of the system was then evaluated over 48 h in two phases using an in vitro model with in which the activated electrodes were suspended in growth medium in a cell-seeded tissue culture plate. In phase-1, the system was tested on human osteosarcoma (MG-63) cell line and compared to titanium controls. In phase-2, the cytotoxicity characteristics were validated with normal human diploid osteoblast cells. The LIDC-activated system demonstrated high antimicrobial efficacy against MRSA, but was also toxic to human cells immediately surrounding the electrodes. The statistical analysis showed that the cytotoxicity was a result of the presence of silver, and the electric activation did not make it worse.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-017-9993-1DOI Listing

Publication Analysis

Top Keywords

antibacterial efficacy
12
efficacy cytotoxicity
8
cytotoxicity low
8
low intensity
8
intensity direct
8
direct current
8
silver-titanium implant
8
implant system
8
system prototype
8
system
6

Similar Publications

Background: The gut microbiota plays a pivotal role in ulcerative colitis (UC) development. This study explores the impact of latent tuberculosis infection (LTBI) on the gut microbiota in UC and assesses changes during vedolizumab treatment, investigating prophylactic anti-tuberculosis therapy.

Results: This cohort study included adult patients with UC receiving vedolizumab treatment at Jinhua Hospital, Zhejiang University from April 2021 to December 2022.

View Article and Find Full Text PDF

Bacterial resistance, a global public health concern prioritized by the World Health Organization, is particularly alarming in Staphylococcus aureus and Escherichia coli. Urgently addressing this, the search for new antibiotics has turned to plant essential oils. Our study focused essential oils derived from Colombian plants Croton killipianus, Croton smithianus, Croton leptostachyus, Croton hondensis, and Croton gossypiifolius.

View Article and Find Full Text PDF

Background: Exposure of critically ill patients to antibiotics lead to intestinal dysbiosis, which often manifests as antibiotic-associated diarrhoea. Faecal microbiota transplantation restores gut microbiota and may lead to faster resolution of diarrhoea.

Methods: Into this prospective, multi-centre, randomized controlled trial we will enrol 36 critically ill patients with antibiotic-associated diarrhoea.

View Article and Find Full Text PDF

Otitis externa is one of the most common diseases in otorhinolaryngological practice frequently requiring prescription of analgesic medications and antimicrobials. The total of 2714 patients were included in the retrospective study to evaluate bacterial etiology, effectiveness, and safety of topical empirical treatment of patients with diagnosed otitis externa during 2018-2023. The most common pathogens isolated were (38.

View Article and Find Full Text PDF

Design, synthesis, antifungal, and antibacterial evaluation of ferulic acid derivatives bearing amide moiety.

Mol Divers

December 2024

Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China.

Natural compounds' derivatives as lead structures could effectively solve plant disease problems. In this article, amide compounds and amide ester compounds were synthetized through ferulic acid as the parent nucleus structure, and their biological activities in vitro and in vivo were evaluated. Compound 1q was screened out as the one with the best activity performance toward Xanthomonas axonopodis pv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!