Effect of lipid-bound apolipoprotein A-I cysteine mutant on ATF3 in RAW264.7 cells.

Biosci Rep

Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong, China

Published: February 2017

Activating transcription factor 3 (ATF3) is a TLR-induced repressor that plays an important role in the inhibition of specific inflammatory signals. We previously constructed recombinant high density lipoproteins (rHDL) (including rHDL, rHDL, rHDL and rHDL) and found that rHDL had a strong anti-inflammatory ability. In the present study, we investigate the roles of recombinant apolipoprotein A-I (ApoA-I) (rHDL) and its cysteine mutant HDLs (rHDL, rHDL and rHDL) on ATF3 function in RAW264.7 cells stimulated by lipopolysaccharide. Our results showed that compared with the LPS group, rHDL can decrease the level of TNF-α and IL-6, whereas rHDL increases their expression levels. RT-PCR and Western blotting results showed that compared with the LPS group, rHDL, rHDL and rHDL can markedly increase the expression level of ATF3, whereas the level of ATF3 decreases in the rHDL group. In summary, the different anti-inflammatory mechanisms of the ApoA-I cysteine mutants might be associated with the regulation of ATF3 level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291141PMC
http://dx.doi.org/10.1042/BSR20160398DOI Listing

Publication Analysis

Top Keywords

rhdl rhdl
32
rhdl
16
apolipoprotein a-i
8
cysteine mutant
8
raw2647 cells
8
compared lps
8
lps group
8
group rhdl
8
level atf3
8
atf3 level
8

Similar Publications

Biomimetic metal-phenolic nanocarrier for co-delivery of multiple phytomedical bioactive components for anti-atherosclerotic therapy.

Int J Pharm

January 2025

School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China. Electronic address:

Atherosclerosis, a major cause of cardiovascular diseases, involves complex pathophysiological processes. The co-delivery of multiple bioactive components derived from phytomedicine to atherosclerotic plaque is challenging, especially for those with varied solubilities. This study introduces a novel metal-phenolic network-based core-shell recombinant high-density lipoprotein nanocarrier (SSPH-MPN@rHDL) for co-delivering multiple bioactive components from Salvia miltiorrhiza and Carthamus tinctorius, including salvianic acid A (SAA), salvianolic acid B (SAB), protocatechuic aldehyde (PCA), hydroxysafflor yellow A (HSYA), and tanshinone IIA (TS-IIA).

View Article and Find Full Text PDF

Combined action of dietary-based approaches and therapeutic agents on cholesterol metabolism and main related diseases.

Clin Nutr ESPEN

January 2025

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal. Electronic address:

Background: Dyslipidaemia is among the major causes of severe diseases and, despite being well-established, the hypocholesterolaemic therapies still face significant concerns about potential side effects (such as myopathy, myalgia, liver injury digestive problems, or mental fuzziness in some people taking statins), interaction with other drugs or specific foods. Accordingly, this review describes the latest developments in the most effective therapies to control and regulate dyslipidaemia.

Scope And Approach: Herein, the metabolic dynamics of cholesterol and their integration with the current therapies: statins, bile acid sequestrants, fibrates, niacin, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, reconstituted high-density lipoprotein (rHDL), or anti-inflammatory and immune-modulating therapies), were compared focusing their effectiveness, patients' adhesion and typical side-effects.

View Article and Find Full Text PDF

Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the leading public health concerns in the world. Therapeutic hypothermia is routinely used in severe TBI, and pathophysiological hyperthermia, frequently observed in TBI patients, has an unclear impact on drug transport in the injured brain due to a lack of study on its effects. We investigated the effect of post-traumatic therapeutic hypothermia at 33°C and pathophysiological hyperthermia at 39°C on brain transport and cell uptake of neuroprotectants after TBI.

View Article and Find Full Text PDF

Reconstituted high-density lipoproteins (rHDL) improve wound healing in diabetes. We aimed to determine if rHDL elicit anti-inflammatory effects in diabetic wounds, as a mechanism to explain their wound healing benefits. Diabetes was induced using streptozotocin in C57Bl6/J mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!