A crowdsourcing study supported by a public participation GIS tool was designed and carried out in two Norwegian regions. The aim was to improve the knowledge about emissions from wood burning for residential heating in urban areas based on the collection of citizens' localized insights. We focus on three main issues: 1) type of dwelling and residential heating source; 2) wood consumption and type of wood appliances; and 3) citizens' perception of the urban environment. Our study shows the importance of wood burning for residential heating, and of the resulted particle emissions, in Norwegian urban areas. Citizens' localized insights on environmental perception highlight the areas in the city that require particular attention as part of clean air strategies. Information about environmental perception is combined with existing environmental data showing certain correlation. The results support the urban environmental management based on co-benefit approaches, achieving several outcomes from a single policy measure. Measures to reduce urban air pollution will have a positive impact on the citizens' environmental perception, and therefore on their quality of life, in addition to reducing the negative consequences of air pollution on human health. The characterization of residential heating by fuelwood is still a challenging activity. Our study shows the potential of a crowdsourcing method as means for bottom-up approaches designed to increase our knowledge on human activities at urban scale that result on emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2017.01.018 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Civil Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.
This paper concerns research into the use of 3D-printed gyroid structures as a modern thermal insulation material in construction. The study focuses on the analysis of open-cell gyroid structures and their effectiveness in insulating external building envelopes. Gyroid composite samples produced using DLP 3D-printing technology were tested to determine key parameters such as thermal conductivity (λ), thermal resistance (R) and heat transfer coefficient (U) according to ISO 9869-1:2014.
View Article and Find Full Text PDFArch Public Health
December 2024
Department of Environmental Sciences, Faculty of Natural Resources, University of Guilan, Someh Sara, Guilan, Iran.
Background: This study evaluated the prevalence of sick building syndrome (SBS) in Rasht, Iran, a subtropical climate with wetter cold season city, during the autumn and winter months of 2020, focusing on the effects of noise and ventilation.
Methods: A total of 420 residents completed the indoor air climate questionnaire (MM040EA), and a walk-through survey of 45 randomly selected residential units assessed environmental noise, ventilation rate, and luminous conditions.
Results: Approximately 38.
J Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Air-conditioning systems, composed mainly of humidity control and heat reallocation units, play a pivotal role in upholding superior air quality and human well-being across diverse environments ranging from international space stations and pharmacies to granaries and cultural relic preservation sites, and to commercial and residential buildings. The adoption of sorbent water as the working pair and low-grade renewable or waste heat in adsorption-driven air-conditioning presents a state-of-the-art solution, notably for its energy efficiency and eco-friendliness vis-à-vis conventional electricity-driven vapor compression cycles. Here, we introduce a rational π-extension strategy to engineer an ultrarobust and highly porous zirconium metal-organic framework (Zr-MOF).
View Article and Find Full Text PDFEnviron Int
December 2024
Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK. Electronic address:
Poland is in the group of European countries with the most severe air quality and specific emission structure (over 80 % of PM2.5 emitted in residential combustion). In this work, we quantify the health impacts of PM2.
View Article and Find Full Text PDFF1000Res
December 2024
Laboratory of Technologies and Applied Science, The University Institute of Technology, The University of Douala, Douala, Cameroon.
This work is an application of experimental temperature data previously collected in a residential building in Douala, Cameroon, in order to analyze thermal discomfort. The data was collected according to three occupancy scenarios over 12 month period using thermohygrometer sensors. The temperature data are analysed in comparison with the comfortable temperature range from 24°C to 28°C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!