Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The segmentation of skin lesions in dermoscopic images is a fundamental step in automated computer-aided diagnosis of melanoma. Conventional segmentation methods, however, have difficulties when the lesion borders are indistinct and when contrast between the lesion and the surrounding skin is low. They also perform poorly when there is a heterogeneous background or a lesion that touches the image boundaries; this then results in under- and oversegmentation of the skin lesion. We suggest that saliency detection using the reconstruction errors derived from a sparse representation model coupled with a novel background detection can more accurately discriminate the lesion from surrounding regions. We further propose a Bayesian framework that better delineates the shape and boundaries of the lesion. We also evaluated our approach on two public datasets comprising 1100 dermoscopic images and compared it to other conventional and state-of-the-art unsupervised (i.e., no training required) lesion segmentation methods, as well as the state-of-the-art unsupervised saliency detection methods. Our results show that our approach is more accurate and robust in segmenting lesions compared to other methods. We also discuss the general extension of our framework as a saliency optimization algorithm for lesion segmentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2017.2653179 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!