Material-Dependent Implant Artifact Reduction Using SEMAC-VAT and MAVRIC: A Prospective MRI Phantom Study.

Invest Radiol

From the *Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich; †Institute for Biomedical Engineering, University and ETH Zurich, Zurich; ‡Department of Radiology, Kantonsspital Muensterlingen, Muensterlingen; §University of Zurich, Zurich; and ∥Department of Radiology, Hospital and University of Bern, Inselspital, Bern, Switzerland.

Published: June 2017

Objective: The aim of this study was to compare the degree of artifact reduction in magnetic resonance imaging achieved with slice encoding for metal artifact correction (SEMAC) in combination with view angle tilting (VAT) and multiacquisition variable resonance image combination (MAVRIC) for standard contrast weightings and different metallic materials.

Methods: Four identically shaped rods made of the most commonly used prosthetic materials (stainless steel, SS; titanium, Ti; cobalt-chromium-molybdenum, CoCr; and oxidized zirconium, oxZi) were scanned at 3 T. In addition to conventional fast spin-echo sequences, metal artifact reduction sequences (SEMAC-VAT and MAVRIC) with varying degrees of artifact suppression were applied at different contrast weightings (T1w, T2w, PDw). Two independent readers measured in-plane and through-plane artifacts in a standardized manner. In addition, theoretical frequency-offset and frequency-offset-gradient maps were calculated. Interobserver agreement was assessed using intraclass correlation coefficient.

Results: Interobserver agreement was almost perfect (intraclass correlation coefficient, 0.86-0.99). Stainless steel caused the greatest artifacts, followed by CoCr, Ti, and oxZi regardless of the imaging sequence. While for Ti and oxZi rods scanning with weak SEMAC-VAT showed some advantage, for SS and CoCr, higher modes of SEMAC-VAT or MAVRIC were necessary to achieve artifact reduction. MAVRIC achieved better artifact reduction than SEMAC-VAT at the cost of longer acquisition times. Simulations matched well with the apparent geometry of the frequency-offset maps.

Conclusions: For Ti and oxZi implants, weak SEMAC-VAT may be preferred as it is faster and produces less artifact than conventional fast spin-echo. Medium or strong SEMAC-VAT or MAVRIC modes are necessary for significant artifact reduction for SS and CoCr implants.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000000351DOI Listing

Publication Analysis

Top Keywords

artifact reduction
24
semac-vat mavric
16
artifact
9
reduction semac-vat
8
metal artifact
8
contrast weightings
8
stainless steel
8
conventional fast
8
fast spin-echo
8
interobserver agreement
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!