Mesenchymal stem cells (MSCs) are being studied extensively due to their potential as a therapeutic cell source for many load-bearing tissues. Compression of tissues and the subsequent deformation of cells are just one type physical strain MSCs will need to withstand in vivo. Mechanotransduction by MSCs and their mechanical properties are partially controlled by the cytoskeleton, including vimentin intermediate filaments (IFs). Vimentin IF deficiency has been tied to changes in mechanosensing and mechanical properties of cells in some cell types. However, how vimentin IFs contribute to MSC deformability has not been comprehensively studied. Investigating the role of vimentin IFs in MSC mechanosensing and mechanical properties will assist in functional understanding and development of MSC therapies. In this study, we examined vimentin IFs' contribution to MSCs' ability to deform under external deformation using RNA interference. Our results indicate that a deficient vimentin IF network decreases the deformability of MSCs, and that this may be caused by the remaining cytoskeletal network compensating for the vimentin IF network alteration. Our observations introduce another piece of information regarding how vimentin IFs are involved in the complex role the cytoskeleton plays in the mechanical properties of cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-016-1787-z | DOI Listing |
Sci Rep
December 2024
Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India.
A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical Engineering, Aalto University, P.O. Box 15500, Aalto, FI-00076, Finland.
Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.
The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.
View Article and Find Full Text PDFNat Commun
December 2024
School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!