Mechanisms of Action of Surgical Interventions on Weight-Related Diseases: the Potential Role of Bile Acids.

Obes Surg

The Center for Obesity and Diabetes, Oswaldo Cruz German Hospital, Rua Cincinato Braga, 37 5o. andar, São Paulo, São Paulo, Brazil.

Published: March 2017

Surgical interventions for weight-related diseases (SWRD) may have substantial and sustainable effect on weight reduction, also leading to a higher remission rate of type 2 diabetes (T2D) mellitus than any other medical treatment or lifestyle intervention. The resolution of T2D after Roux-en-Y gastric bypass (RYGB) typically occurs too quickly to be accounted for by weight loss alone, suggesting that these operations have a direct impact on glucose homeostasis. The mechanisms underlying these beneficial effects however remain unclear. Recent research suggests that changes in the concentrations of plasma bile acids might contribute to these metabolic changes after surgery. In this review, we aimed to outline the potential role of bile acids in SWRD. We systematically reviewed MEDLINE, SCOPUS, and Web of Science for articles reporting the effect of SWRD on outcomes published between 1969 and 2016. We found that changes in circulating bile acids after surgery may play a major role through activation of the farnesoid X receptor A (FXRA), the fibroblast growth factor 19 (FGF19), and the G protein-coupled bile acid receptor (TGR5). Bile acid concentration increased significantly after RYGB. Some studies suggest that a transitory decrease occurs at 1 week post-surgery, followed by a gradual increase. Most studies have shown the increase to be proportionate by all bile acid subtypes. Bile acids can regulate glucose metabolism through the expression of TGR5 receptor in L cells, resulting in a release of glucagon-like peptide 1 (GLP-1). It may also induce the synthesis and secretion of FGF19 in ileal cells, thereby improving insulin sensitivity and regulating glucose metabolism. All the present SWRD are involved with changes in food stimulation to the stomach. This implies that discovering and developing the antagonists to TGR5 and FXRA may effectively control metabolic syndrome and the elucidation of the mechanisms underlying the physiological effects related to weight loss and T2D remission after surgery may help to identify new drug targets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11695-017-2549-1DOI Listing

Publication Analysis

Top Keywords

bile acids
20
bile acid
12
surgical interventions
8
interventions weight-related
8
weight-related diseases
8
potential role
8
bile
8
role bile
8
weight loss
8
mechanisms underlying
8

Similar Publications

Trazodone, dibenzoylmethane and tauroursodeoxycholic acid do not prevent motor dysfunction and neurodegeneration in Marinesco-Sjögren syndrome mice.

PLoS One

January 2025

Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

There is no cure for Marinesco-Sjögren syndrome (MSS), a genetic multisystem disease linked to loss-of-function mutations in the SIL1 gene, encoding a BiP co-chaperone. Previously, we showed that the PERK kinase inhibitor GSK2606414 delays cerebellar Purkinje cell (PC) degeneration and the onset of ataxia in the woozy mouse model of MSS. However, GSK2606414 is toxic to the pancreas and does not completely rescue the woozy phenotype.

View Article and Find Full Text PDF

Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.

View Article and Find Full Text PDF

Background: Inherited cholestatic liver disorders such as progressive familial intrahepatic cholestasis (PFIC) and Alagille syndrome result in significant pruritus and increased serum bile acids, necessitating liver transplantation. This study aims to evaluate the efficacy and safety of Ileal bile acid transport inhibitors (IBATIs) in children with PFIC and Alagille syndrome.

Methods: We conducted a comprehensive search across the databases to identify relevant randomized controlled trials (RCTs), and Covidence was used to screen eligible articles.

View Article and Find Full Text PDF

The discovery of a new nonbile acid modulator of Takeda G protein-coupled receptor 5: An integrated computational approach.

Arch Pharm (Weinheim)

January 2025

Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.

The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5.

View Article and Find Full Text PDF

This study investigated whether the galactooligosaccharide (GOS)-metabolism-related genes (GOS-cluster) in contribute to alleviating glucose and lipid metabolic disorders in type 2 diabetic mice. Genomic analysis of 69 strains based on the GOS-cluster, combined with in vitro fermentation experiments, revealed that high-GOS-cluster strains (≥24 MFS, ≥39 GOS-cluster) demonstrated superior GOS utilization and bile salt tolerance. In vivo the high-GOS-cluster strains resulted in a significant reduction of blood glucose levels by 18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!