An efficient method to obtain chiral 1,2-disubstituted ferrocenyl ligands has been developed. The introduction of planar chirality was accomplished by using 2-thiazoline as an ortho-directing lithiation group, and moreover, these kinds of ligands possess a central chirality from the amino alcohol used in their synthesis. The X-ray analysis and DFT calculations confirmed the diastereoselectivity of ortho-lithiation and the configuration of the planar chirality. The ability of these new bidentate [N,S]-ferrocene ligands to act in Pd-catalyzed asymmetric allylic alkylation has also been demonstrated and compared with their oxazoline counterparts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6dt04119aDOI Listing

Publication Analysis

Top Keywords

bidentate [ns]-ferrocene
8
[ns]-ferrocene ligands
8
asymmetric allylic
8
allylic alkylation
8
planar chirality
8
chiral bidentate
4
ligands
4
ligands based
4
based thiazoline
4
thiazoline framework
4

Similar Publications

Electrochemical water oxidation holds immense potential for sustainable energy generation, splitting water into clean-burning hydrogen and life-giving oxygen. However, a key roadblock lies in the sluggish nature of the oxygen evolution reaction (OER). Finding stable, cost-effective, and environmentally friendly catalysts with high OER efficiency is crucial to unlock this technology's full potential.

View Article and Find Full Text PDF

1,1'-Disubstituted Ferrocene Ligand Scaffolds Featuring Pnictogens Other than Phosphorus as Donor Sites.

Molecules

November 2024

Institut für Chemie und CINSaT, University of Kassel, Heinrich Plett-Straße 40, 34132 Kassel, Germany.

The chemistry of bidentate ligands with a dppf-like motif, where phosphorus is fully or partially replaced by other pnictogens as donor sites, is summarized and discussed in this comprehensive review, while covering the literature from 1966 to 2024, related to more than 165 original references and discussing more than 75 independent chemical entities (-). Besides addressing synthetic, structural, and electrochemical aspects of such compounds, their donor properties and metal coordination behavior is discussed, along with catalytic applications. Based on their electronic and steric situations, trends in the performance of such compounds, either as ligands for catalysis or on their own merits for non-catalytic purposes, have been elucidated.

View Article and Find Full Text PDF

Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites ( and , respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT.

View Article and Find Full Text PDF

Hetero-bimetallic ruthenium(II) complexes (PRAFIZ and PRBFIZ) containing acetyl ferrocene (AFIZ)/benzoyl ferrocene isonicotinic hydrazone ligands (BFIZ) were synthesized and characterized by various spectral and analytical techniques. The structure of acetyl ferrocene isonicotinic hydrazone (AFIZ) and the complex PRBFIZ was confirmed by X-ray crystallography. The hydrazide ligands coordinated in a bidentate monobasic fashion using their N1 hydrazinic nitrogen and enolic oxygen atoms.

View Article and Find Full Text PDF

Ferrocenyl Dinuclear Gold(I) Complexes. Study of their Structural Features and the Influence of Bridging and Phosphane Ligands in a Catalytic Cyclization Reaction.

Chemistry

February 2024

Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.

The combination of the ferrocene moiety with gold(I) catalysis remains a relatively unexplored field. In this article, we delve into the synthesis, characterization, and potential catalytic activity of four complexes utilizing both monodentate and bidentate ferrocenyl diphenylphosphane ligands (ppf and dppf), coordinated with two gold(I) metal centers, linked by either chloride or pentafluorophenylthiolate bridging ligands. This leads to the formation of cationic "self-activated" precatalysts capable of initiating the catalytic cycle without the need for external additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!