Purpose: The therapy endpoint most commonly used in MR-guided high intensity focused ultrasound is the thermal dose. Although namely correlated with nonviable tissue, it does not account for changes in mechanical properties of tissue during ablation. This study presents a new acquisition sequence for multislice, subsecond and simultaneous imaging of tissue temperature and displacement during ablation.

Methods: A single-shot echo planar imaging sequence was implemented using a pair of motion-encoding gradients, with alternated polarities. A first ultrasound pulse was synchronized on the second lobe of the motion-encoding gradients and followed by continuous sonication to induce a local temperature increase in ex vivo muscle and in vivo on pig liver. Lastly, the method was evaluated in the brain of two volunteers to assess method's precision.

Results: For thermal doses higher than the lethal threshold, displacement amplitude was reduced by 21% and 28% at the focal point in muscle and liver, respectively. Displacement value remained nearly constant for nonlethal thermal doses values. The mean standard deviation of temperature and displacement in the brain of volunteers remained below 0.8 °C and 2.5 µm.

Conclusion: This new fast imaging sequence provides real-time measurement of temperature distribution and displacement at the focus during HIFU ablation. Magn Reson Med 78:1911-1921, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.26588DOI Listing

Publication Analysis

Top Keywords

mr-guided high
8
high intensity
8
intensity focused
8
focused ultrasound
8
temperature displacement
8
imaging sequence
8
motion-encoding gradients
8
brain volunteers
8
thermal doses
8
displacement
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!