Objectives: There is considerable debate among the public health community about the health risks of secondhand exposure to the aerosol from electronic cigarettes (e-cigarettes). Despite mounting scientific evidence on the chemical content of e-cigarette aerosol, public perceptions of the relative safety of secondhand e-cigarette aerosol have not been well characterized.

Method: This study collected tweets, or messages sent using Twitter, about exposure to secondhand e-cigarette aerosol over a 6-week period in 2015. Tweets were coded on sentiment about e-cigarettes (pro-, anti-, or neutral/unknown) and topic (health, social, advertisement, or unknown).

Results: The 1519 tweets included 531 pro-e-cigarette tweets, 392 anti-e-cigarette tweets, and 596 neutral tweets. Social tweets far outnumbered health tweets (747 vs. 182, respectively). Social-focused tweets were predominantly pro-e-cigarette, whereas health-focused tweets were predominantly anti-e-cigarette.

Discussion: Twitter discussions about secondhand vaping are dominated by pro-e-cigarette social tweets, although there is a presence of anti-e-cigarette social tweets and tweets about negative and positive health effects. Public health and regulatory agencies could use social media and traditional media to disseminate the message that e-cigarette aerosol contains potentially harmful chemicals and could be perceived as offensive. This study identifies the prevalent topics and opinions that could be incorporated into health education messages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225957PMC
http://dx.doi.org/10.18001/TRS.2.2.5DOI Listing

Publication Analysis

Top Keywords

e-cigarette aerosol
20
tweets
13
secondhand e-cigarette
12
social tweets
12
public health
8
health
7
aerosol
6
e-cigarette
5
social
5
perceptions secondhand
4

Similar Publications

The objective of this study is to investigate the potential mutagenic effects of the exposure of mice to aerosols produced from the component liquids of an electronic nicotine delivery system (ENDS). The use of electronic cigarettes (e-cigs) and ENDSs has increased tremendously over the past two decades. From what we know to date, ENDSs contain much lower levels of known carcinogens than tobacco smoke.

View Article and Find Full Text PDF

Tobacco use is the leading cause of death globally and in the U.S. After decades of decline, driven by decreases in combusted tobacco use, nicotine product use has increased due to Electronic Nicotine Delivery Systems (ENDS), also known as e-cigarettes or vapes.

View Article and Find Full Text PDF

E-cigarette-induced changes in cell stress and mitochondrial function.

Free Radic Biol Med

January 2025

VA San Diego Healthcare System, San Diego, California, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA.

Inhaling aerosols from electronic nicotine delivery systems, such as e-cigarettes (e-cigs), may pose health risks beyond those caused by nicotine intake. Exposure to e-cig aerosols can lead to the release of exosomes and metabolites into the bloodstream, potentially affecting mitochondrial physiology across the body, leading to chronic inflammatory diseases. In this study we assessed the effects of e-cig use by young healthy human subjects on the circulating exosome profile and markers of cell stress, and also defined the effects of e-cig user plasma on mitochondrial function in endothelial cells (EA.

View Article and Find Full Text PDF

Ventilation and features of the lung environment dynamically alter modeled intrapulmonary aerosol exposure from inhaled electronic cigarettes.

Sci Rep

December 2024

Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.

Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.

View Article and Find Full Text PDF

E-Cigarette Effects on Oral Health: A Molecular Perspective.

Food Chem Toxicol

December 2024

Departments of Otolaryngology-Head and Neck Surgery; Departments of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City OK 73104, USA; Departments of TSET Health Promotion Research Center, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA. Electronic address:

Electronic cigarettes (e-cigarettes) have emerged as a potential alternative to traditional smoking and may aid in tobacco harm reduction and smoking cessation. E-cigarette use has notably increased, especially among young non-tobacco users, raising concerns due to the unknown long-term health effects. The oral cavity is the first and one of the most crucial anatomical sites for the deposition of e-cigarette aerosols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!