Magnetic resonance (MR) imaging has been widely implemented as a non-invasive modality to investigate musculoskeletal (MSK) tissue disease, injury, and pathology. Advancements in MR sequences provide not only enhanced morphologic contrast for soft tissues, but also quantitative biochemical evaluation. Ultrashort time to echo (UTE) sequence, in particular, enables novel morphologic and quantitative evaluation of previously unseen MSK tissues. By using short minimum echo times (TE) below 1 msec, the UTE sequence can unveil short T2 properties of tissues including the deepest layers of the articular cartilage, cartilaginous endplate at the discovertebral junction, the meniscus, and the cortical bone. This article will discuss the application of UTE to evaluate these MSK tissues, starting with tissue structure, MR imaging appearance on standard versus short and ultrashort TE sequences, and provide the range of quantitative MR values found in literature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5219960 | PMC |
http://dx.doi.org/10.21037/qims.2016.12.06 | DOI Listing |
J Phys Chem Lett
January 2025
Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington 6012, New Zealand.
We demonstrate a high-performance ultrafast broadband time-resolved photoluminescence (TRPL) system based on the transient grating photoluminescence spectroscopy (TGPLS) technique. The core of the system is a Kerr effect-induced transient grating (TG) optical gate driven by high repetition rate ultrashort laser pulses at 1030 nm with micro-Joule pulse energy. Satisfying the demands of spectroscopy applications, the setup achieves high sensitivity, rapid data acquisition, ultrafast time resolution, and a wide spectral window from ultraviolet to near-infrared.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
May 2024
Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
Utilizing a multi-task deep learning framework, this study generated synthetic CT (sCT) images from a limited dataset of Ultrashort echo time (UTE) MRI for transcranial focused ultrasound (tFUS) planning. A 3D Transformer U-Net was employed to produce sCT images that closely replicated actual CT scans, demonstrated by an average Dice coefficient of 0.868 for morphological accuracy.
View Article and Find Full Text PDFIntroduction: Restricted fetal and neonatal growth is a known risk factor for bronchopulmonary dysplasia (BPD) in premature infants. However, the impact of nutrition and infant growth specifically on lung growth in BPD in unknown. Moreover, whether all lung growth in BPD is beneficial is unclear.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Physics and Astronomy, Adam Mickiewicz University, Poznan, 61-614, Poland.
The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Terahertz Research Center, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Low-dimensional materials (LDMs) with unique electromagnetic properties and diverse local phenomena have garnered significant interest, particularly for their low-energy responses within the terahertz (THz) range. Achieving deep subwavelength resolution, THz nanoscopy offers a promising route to investigate LDMs at the nanoscale. Steady-state THz nanoscopy has been demonstrated as a powerful tool for investigating light-matter interactions across boundaries and interfaces, enabling insights into physical phenomena such as localized collective oscillations, quantum confinement of quasiparticles, and metal-to-insulator phase transitions (MITs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!