Loss of the tumor suppressors RB1 and TP53 and MYC amplification are frequent oncogenic events in small cell lung cancer (SCLC). We show that Myc expression cooperates with Rb1 and Trp53 loss in the mouse lung to promote aggressive, highly metastatic tumors, that are initially sensitive to chemotherapy followed by relapse, similar to human SCLC. Importantly, MYC drives a neuroendocrine-low "variant" subset of SCLC with high NEUROD1 expression corresponding to transcriptional profiles of human SCLC. Targeted drug screening reveals that SCLC with high MYC expression is vulnerable to Aurora kinase inhibition, which, combined with chemotherapy, strongly suppresses tumor progression and increases survival. These data identify molecular features for patient stratification and uncover a potential targeted treatment approach for MYC-driven SCLC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310991 | PMC |
http://dx.doi.org/10.1016/j.ccell.2016.12.005 | DOI Listing |
Clin Epigenetics
December 2024
Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences, Grenoble, France.
Background: MYC-driven lymphomas are a subset of B-cell lymphomas characterized by genetic alterations that dysregulate the expression of the MYC oncogene. When overexpressed, typically through chromosomal translocations, amplifications, or other mechanisms, MYC can drive uncontrolled cell growth and contribute to cancer development. MYC-driven lymphomas are described as aggressive entities which require intensive treatment approaches and can be associated with poor prognosis.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK.
KMT2A-rearranged leukemias are a highly aggressive subset of acute leukemia, characterized by poor prognosis and frequent relapses despite intensive treatment. Menin inhibitors, which target the critical KMT2A-menin interaction driving leukemogenesis, have shown promise in early clinical trials. However, resistance to these inhibitors, often driven by menin mutations or alternative oncogenic pathways, remains a significant challenge.
View Article and Find Full Text PDFJ Appl Genet
December 2024
Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
The MYC proto-oncogene encodes a basic helix-loop-helix leucine zipper (HLH-LZ) transcription factor, acting as a master regulator of genes involved in cellular proliferation, differentiation, and immune surveillance. Dysregulation of MYC is implicated in over 70% of human cancers, driving oncogenic processes through altered gene expression and disrupted cellular functions. Non-synonymous single nucleotide polymorphisms (nsSNPs) within coding regions can significantly impact protein structure and function, leading to abnormal cellular behaviours.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Office for West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610021, China. Electronic address:
Angiogenesis significantly drives tumor progression, and the functions of vascular endothelial cells are influenced by various factors. Tumor cells are characterized by abnormal sialylation, and their dynamic balance depends on sialyltransferases and sialidases. NEU3 is a plasma membrane-associated sialidase, vital for the regulation of cell surface sialylation.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!