Low temperature MBBR nitrification: Microbiome analysis.

Water Res

Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada.

Published: March 2017

This study aims to investigate post carbon removal moving bed biofilm reactor (MBBR) nitrification through the transition from 20 °C to 1 °C and during through long term operation at 1 °C. Four pilot nitrifying MBBR reactors were operated at various ammonia loading rates to elucidate the temperature effects on ammonia removal rates, cell viability and bacterial communities. The transition from 20 °C to 1 °C and during long term operation at 1 °C were modeled using Arrhenius temperature correction coefficients. Specifically, the steady state removal rates at 1 °C on average were 22.8% of the maximum ammonia removal rate at 20 °C, which corresponds to an Arrhenius temperature correction of 1.086 during steady operation at 1 °C. The microbial communities of the nitrifying MBBR biofilm were shown to be significantly more diverse at 20 °C as compared to 1 °C operation. Although less diverse at 1 °C, 2000 species of bacteria were identified in the nitrifying biofilm during operation at this low temperature. Nitrosomonads were shown to be the dominant ammonia oxidizing bacteria (AOB) and Nitrospira was shown to be the dominant nitrite oxidizing bacteria (NOB) in all the pilot MBBR reactors at all temperatures. The performance of the post carbon removal nitrifying MBBR systems were shown to be enhanced at 1 °C by an increase in the viable embedded biomass as well as thicker biofilm. This effectively increases the number of viable cell present during low temperature operation, which partially compensates for the significant decrease in rate of ammonia removal per nitrifying cell. Operation at the highest loading conditions tested in this study at 1 °C were shown to reduce the ammonia removal rate compared to lower loading conditions at 1 °C. The lower performance at higher loading conditions at 1 °C demonstrated an enrichment in the stress response metagenomics pathways of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2016.12.050DOI Listing

Publication Analysis

Top Keywords

ammonia removal
16
low temperature
12
1 °c
12
operation 1 °c
12
nitrifying mbbr
12
loading conditions
12
mbbr nitrification
8
post carbon
8
carbon removal
8
transition 20 °c
8

Similar Publications

The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4.

View Article and Find Full Text PDF

Flow-Electrode capacitive deionization for enhanced selective separation of Ammonia, Phosphorus, and caproate from sewage sludge fermentation: Performance and mechanistic insights.

Bioresour Technol

January 2025

School of Environment and Ecology, Jiangnan University, Wuxi 214122 China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011 China. Electronic address:

Caproic acid has broad applications and can be produced from activated sludge via fermentation, but its quality is hindered by ammonia (NH-N) and reactive phosphorus (RP) in the fermentation broth. However, flow-electrode capacitive deionization (FCDI), a novel ion separation technology that operates continuously without secondary pollution seems to be an efficient process that separates the ions. The results showed that at pH 5.

View Article and Find Full Text PDF

Biosorption of heavy metals by microalgae: hazardous side effects for marine organisms.

Chemosphere

January 2025

ING PAN - Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, Senacka 1 Str., PL31002 Kraków, Poland.

Biosorption is nowadays recommended as an ecological and environmentally friendly alternative to remove metals from contaminated regions. Even in situ incubations of algae on the seabed are conducted to investigate potential future ways of reducing metal contamination. Our study investigated the negative effects on microorganisms when metal-enriched algae are released into the marine environment.

View Article and Find Full Text PDF

SIRT5 desuccinylating IDH2 to alleviate oxidative stress in bovine mammary epithelial cells induced by ammonia.

Int J Biol Macromol

January 2025

Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China. Electronic address:

Ammonia can cause cells to produce a large amount of reactive oxygen species (ROS), leading to the oxidative stress of cells. As the main intracellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH) plays a crucial role in maintaining reduced glutathione (GSH), helping to remove ROS and protect cells from oxidative damage. Our study demonstrated that SIRT5 desuccinylated isocitrate dehydrogenase 2 (IDH2) to enhance its activity, resulting in increased NADPH production.

View Article and Find Full Text PDF

Enhanced prediction of partial nitrification-anammox process in wastewater treatment by developing an attention-based deep learning network.

J Environ Manage

January 2025

School of Artificial Intelligence, Xidian University, No. 2 South Taibai Road, Xi'an, Shaanxi, 710071, China.

In the process of partial nitrification and anaerobic ammonia oxidation (anammox) for nitrogen removal, the process offers simple metabolic pathways, low operating costs, and high nitrogenous loading rates. However, since the partial nitrification-anammox (PN-anammox) process combines partial nitrification and anammox reactions within the same reactor, strict control of dissolved oxygen (DO) is essential. Additionally, assessing treatment performance through chemical measurement involves time lag, making it challenging to recover the biological process when issue arise, especially in the PN-anammox process, where strict DO control and the sensitivity of anammox bacteria to conditions and substrates demand timely intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!