The physical properties of the extracellular matrix play an essential role in guiding stem cell differentiation and tissue morphogenesis both in vivo and in vitro. Existing work to investigate the role of matrix mechanics in directing stem cell proliferation, self-renewal, and differentiation has been limited by the poor attachment and survival of human pluripotent cells cultured on soft matrices (Young's modulus E ≲ 1000 Pa). To address this limitation we developed a protocol for generating semi-interpenetrating networks of polyacrylamide and recombinant basement membrane. Using these materials, we found that human embryonic stem cells (hESCs) remained proliferative and pluripotent even when grown in small colonies and on surfaces ranging in stiffness from 150 to 12000 Pa, spanning the range of tissue stiffnesses likely to be encountered in the embryo. Considerable recent attention has focused on the role of the transcriptional coactivator and Hippo effector YAP in regulating differentiation and cell proliferation both in the early embryo and in vitro. We found that while YAP localized to the nucleus on substrates of E ≳ 1000 Pa, its localization was heterogeneous on substrates of moduli ≲ 450 Pa, with predominantly nuclear localization at the colony periphery and mixed cytoplasmic and nuclear localization for cells in the colony interior, a pattern reminiscent of YAP subcellular localization in the inner cell mass (ICM) of the early embryo. In addition, hESC colony dynamics were highly responsive to substrate stiffness, with cells assembling into monolayers, multilayer structures, and transient, hollow rosettes in response to decreasing substrate stiffnesses in the range of 12000 to 150 Pa. We suggest that soft, ligand-rich substrates such as are described here provide a promising means of recapitulating aspects of early mammalian development that are otherwise inaccessible, and more broadly may be useful in the derivation of complex tissues from pluripotent cells in an in vitro setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2016.12.005 | DOI Listing |
Front Microbiol
January 2025
College of Biology Resources and Environmental Sciences, Jishou University, Jishou, China.
Kiwifruit canker, caused by pv. (PSA), has led to significant losses in the kiwifruit industry each year. Due to the drug resistance feature of PSA, biological control is currently the most promising method.
View Article and Find Full Text PDFHeliyon
January 2025
CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal.
This study investigates the use of recombinant peptidases (EC 3.4) to improve protein hydrolysis and digestibility in , with a focus on addressing the challenge of reduced protein bioavailability for monogastric animals due to resistant protein-pigment formations, such as phycocyanin, and increased digesta viscosity caused by jellification properties. A library of 192 peptidases was generated, from which 142 soluble peptidases were expressed in and subsequently screened for activity against an suspension .
View Article and Find Full Text PDFCurr Pharm Des
January 2025
School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Hemophilia A (HA) is an inherited condition that is characterized by a lack of coagulation factor VIII (FVIII), which is needed for blood clotting. To produce recombinant factor VIII (rFVIII) for treatment, innovative methods are required. This study presents a thorough examination of the genetic engineering and biotechnological methods that are essential for the production of this complex process.
View Article and Find Full Text PDFBiochimie
December 2024
Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.
Bacterial methionine biosynthesis is an attractive target for research due to its central role in cellular metabolism, as most steps of this pathway are missing in mammals. Up to now little is known about sulfur metabolism in pathogenic Clostridia species, making the study of the enzymes of Cys/Met metabolism in Clostridium tetani particularly relevant. Analysis of the C.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
Nonstructural protein 3C, a master protease of Picornaviridae, plays a critical role in viral replication by directly cleaving the viral precursor polyprotein to form the viral capsid protein and antagonizing the host antiviral response. Additionally, 3C protease, as a tool enzyme, is involved in regulating polyprotein expression. Here, the 3C mutant gene (3Cm), fused with a small ubiquitin-like modifier (SUMO) tag at the N-terminal and featuring a mutation at position 127, was inserted into the cold-shock plasmid pCold of Escherichia coli for expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!